scholarly journals Author response: Kinesin-6 regulates cell-size-dependent spindle elongation velocity to keep mitosis duration constant in fission yeast

2019 ◽  
Author(s):  
Lara Katharina Krüger ◽  
Jérémie-Luc Sanchez ◽  
Anne Paoletti ◽  
Phong Thanh Tran
eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Lara Katharina Krüger ◽  
Jérémie-Luc Sanchez ◽  
Anne Paoletti ◽  
Phong Thanh Tran

The length of the mitotic spindle scales with cell size in a wide range of organisms during embryonic development. Interestingly, in C. elegans embryos, this goes along with temporal regulation: larger cells speed up spindle assembly and elongation. We demonstrate that, similarly in fission yeast, spindle length and spindle dynamics adjust to cell size, which allows to keep mitosis duration constant. Since prolongation of mitosis was shown to affect cell viability, this may resemble a mechanism to regulate mitosis duration. We further reveal how the velocity of spindle elongation is regulated: coupled to cell size, the amount of kinesin-6 Klp9 molecules increases, resulting in an acceleration of spindle elongation in anaphase B. In addition, the number of Klp9 binding sites to microtubules increases overproportionally to Klp9 molecules, suggesting that molecular crowding inversely correlates to cell size and might have an impact on spindle elongation velocity control.


2020 ◽  
Vol 64 (2) ◽  
pp. 383-396
Author(s):  
Lara K. Krüger ◽  
Phong T. Tran

Abstract The mitotic spindle robustly scales with cell size in a plethora of different organisms. During development and throughout evolution, the spindle adjusts to cell size in metazoans and yeast in order to ensure faithful chromosome separation. Spindle adjustment to cell size occurs by the scaling of spindle length, spindle shape and the velocity of spindle assembly and elongation. Different mechanisms, depending on spindle structure and organism, account for these scaling relationships. The limited availability of critical spindle components, protein gradients, sequestration of spindle components, or post-translational modification and differential expression levels have been implicated in the regulation of spindle length and the spindle assembly/elongation velocity in a cell size-dependent manner. In this review, we will discuss the phenomenon and mechanisms of spindle length, spindle shape and spindle elongation velocity scaling with cell size.


2017 ◽  
Author(s):  
Corey A. H. Allard ◽  
Hannah E. Opalko ◽  
Ko-Wei Liu ◽  
Uche Medoh ◽  
James B. Moseley

AbstractCell size control requires mechanisms that link cell growth with Cdk1 activity. In fission yeast, the protein kinase Cdr2 forms cortical nodes that include the Cdk1 inhibitor Wee1, along with the Wee1-inhibitory kinase Cdr1. We investigated how nodes inhibit Wee1 during cell growth. Biochemical fractionation revealed that Cdr2 nodes were megadalton structures enriched for activated Cdr2, which increases in level during interphase growth. In live-cell TIRF movies, Cdr2 and Cdr1 remained constant at nodes over time, but Wee1 localized to nodes in short bursts. Recruitment of Wee1 to nodes required Cdr2 kinase activity and the noncatalytic N-terminus of Wee1. Bursts of Wee1 localization to nodes increased 20-fold as cells doubled in size throughout G2. Size-dependent signaling was due in part to the Cdr2 inhibitor Pom1, which suppressed Wee1 node bursts in small cells. Thus, increasing Cdr2 activity during cell growth promotes Wee1 localization to nodes, where inhibitory phosphorylation of Wee1 by Cdr1 and Cdr2 kinases promotes mitotic entry.SummaryCells turn off the mitotic inhibitor Wee1 to enter into mitosis. This study shows how cell growth progressively inhibits fission yeast Wee1 through dynamic bursts of localization to cortical node structures that contain Wee1 inhibitory kinases.


2009 ◽  
Vol 19 (18) ◽  
pp. 1549-1554 ◽  
Author(s):  
Yuki Hara ◽  
Akatsuki Kimura

2016 ◽  
Author(s):  
Daniel Keifenheim ◽  
Xi-Ming Sun ◽  
Edridge D'Souza ◽  
Makoto J. Ohira ◽  
Mira Magner ◽  
...  

SummaryProper cell size is essential for cellular function (Hall et al., 2004). Nonetheless, despite more than 100 years of work on the subject, the mechanisms that maintain cell size homeostasis are largely mysterious (Marshall et al., 2012). Cells in growing populations maintain cell size within a narrow range by coordinating growth and division. Bacterial and eukaryotic cells both demonstrate homeostatic size control, which maintains population-level variation in cell size within a certain range, and returns the population average to that range if it is perturbed (Marshall et al., 2012; Turner et al., 2012; Amodeo and Skotheim, 2015). Recent work has proposed two different strategies for size control: budding yeast has been proposed to use an inhibitor-dilution strategy to regulate size at the G1/S transition (Schmoller et al., 2015), while bacteria appear to use an adder strategy, in which a fixed amount of growth each generation causes cell size to converge on a stable average, a mechanism also suggested for budding yeast (Campos et al., 2014; Jun and Taheri-Araghi, 2015; Taheri-Araghi et al., 2015; Tanouchi et al., 2015; Soifer et al., 2016). Here we present evidence that cell size in the fission yeast Schizosaccharomyces pombe is regulated by a third strategy: the size dependent expression of the mitotic activator Cdc25. The cdc25 transcript levels are regulated such that smaller cells express less Cdc25 and larger cells express more Cdc25, creating an increasing concentration of Cdc25 as cell grow and providing a mechanism for cell to trigger cell division when they reach a threshold concentration of Cdc25. Since regulation of mitotic entry by Cdc25 is well conserved, this mechanism may provide a wide spread solution to the problem of size control in eukaryotes.


2021 ◽  
Author(s):  
Shixuan Liu ◽  
Ceryl Tan ◽  
Chloe Melo-Gavin ◽  
Kevin G. Mark ◽  
Miriam Bracha Ginzberg ◽  
...  

Proliferating animal cells maintain a stable size distribution over generations despite fluctuations in cell growth and division size. This tight control of cell size involves both cell size checkpoints (e.g., delaying cell cycle progression for small cells) and size-dependent compensation in rates of mass accumulation (e.g., slowdown of cellular growth in large cells). We previously identified that the mammalian cell size checkpoint is mediated by a selective activation of the p38 MAPK pathway in small cells. However, mechanisms underlying the size-dependent compensation of cellular growth remain unknown. In this study, we quantified global rates of protein synthesis and degradation in naturally large and small cells, as well as in conditions that trigger a size-dependent compensation in cellular growth. Rates of protein synthesis increase proportionally with cell size in both perturbed and unperturbed conditions, as well as across cell cycle stages. Additionally, large cells exhibit elevated rates of global protein degradation and increased levels of activated proteasomes. Conditions that trigger a large-size-induced slowdown of cellular growth also promote proteasome-mediated global protein degradation, which initiates only after growth rate compensation occurs. Interestingly, the elevated rates of global protein degradation in large cells were disproportionately higher than the increase in size, suggesting activation of protein degradation pathways. Large cells at the G1/S transition show hyperactivated levels of protein degradation, even higher than similarly sized or larger cells in S or G2, coinciding with the timing of the most stringent size control in animal cells. Together, these findings suggest that large cells maintain cell size homeostasis by activating global protein degradation to induce a compensatory slowdown of growth.


2009 ◽  
Vol 187 (3) ◽  
pp. 399-412 ◽  
Author(s):  
Thibault Courtheoux ◽  
Guillaume Gay ◽  
Yannick Gachet ◽  
Sylvie Tournier

Faithful segregation of sister chromatids requires the attachment of each kinetochore (Kt) to microtubules (MTs) that extend from opposite spindle poles. Merotelic Kt orientation is a Kt–MT misattachment in which a single Kt binds MTs from both spindle poles rather than just one. Genetic induction of merotelic Kt attachment during anaphase in fission yeast resulted in intra-Kt stretching followed by either correction or Kt disruption. Laser ablation of spindle MTs revealed that intra-Kt stretching and merotelic correction were dependent on MT forces. The presence of multiple merotelic chromosomes linearly antagonized the spindle elongation rate, and this phenomenon could be solved numerically using a simple force balance model. Based on the predictions of our mechanical model, we provide in vivo evidence that correction of merotelic attachment in anaphase is tension dependent and requires an Ase1/Prc1-dependent mechanism that prevents spindle collapse and thus asymmetric division and/or the appearance of the cut phenotype.


2017 ◽  
Vol 28 (25) ◽  
pp. 3647-3659 ◽  
Author(s):  
Masashi Yukawa ◽  
Tomoki Kawakami ◽  
Masaki Okazaki ◽  
Kazunori Kume ◽  
Ngang Heok Tang ◽  
...  

Accurate chromosome segregation relies on the bipolar mitotic spindle. In many eukaryotes, spindle formation is driven by the plus-end–directed motor kinesin-5 that generates outward force to establish spindle bipolarity. Its inhibition leads to the emergence of monopolar spindles with mitotic arrest. Intriguingly, simultaneous inactivation of the minus-end–directed motor kinesin-14 restores spindle bipolarity in many systems. Here we show that in fission yeast, three independent pathways contribute to spindle bipolarity in the absence of kinesin-5/Cut7 and kinesin-14/Pkl1. One is kinesin-6/Klp9 that engages with spindle elongation once short bipolar spindles assemble. Klp9 also ensures the medial positioning of anaphase spindles to prevent unequal chromosome segregation. Another is the Alp7/TACC-Alp14/TOG microtubule polymerase complex. Temperature-sensitive alp7cut7pkl1 mutants are arrested with either monopolar or very short spindles. Forced targeting of Alp14 to the spindle pole body is sufficient to render alp7cut7pkl1 triply deleted cells viable and promote spindle assembly, indicating that Alp14-mediated microtubule polymerization from the nuclear face of the spindle pole body could generate outward force in place of Cut7 during early mitosis. The third pathway involves the Ase1/PRC1 microtubule cross-linker that stabilizes antiparallel microtubules. Our study, therefore, unveils multifaceted interplay among kinesin-dependent and -independent pathways leading to mitotic bipolar spindle assembly.


Sign in / Sign up

Export Citation Format

Share Document