scholarly journals An evolutionary recent IFN/IL-6/CEBP axis is linked to monocyte expansion and tuberculosis severity in humans

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Murilo Delgobo ◽  
Daniel AGB Mendes ◽  
Edgar Kozlova ◽  
Edroaldo Lummertz Rocha ◽  
Gabriela F Rodrigues-Luiz ◽  
...  

Monocyte counts are increased during human tuberculosis (TB) but it has not been determined whether Mycobacterium tuberculosis (Mtb) directly regulates myeloid commitment. We demonstrated that exposure to Mtb directs primary human CD34+ cells to differentiate into monocytes/macrophages. In vitro myeloid conversion did not require type I or type II IFN signaling. In contrast, Mtb enhanced IL-6 responses by CD34+ cell cultures and IL-6R neutralization inhibited myeloid differentiation and decreased mycobacterial growth in vitro. Integrated systems biology analysis of transcriptomic, proteomic and genomic data of large data sets of healthy controls and TB patients established the existence of a myeloid IL-6/IL6R/CEBP gene module associated with disease severity. Furthermore, genetic and functional analysis revealed the IL6/IL6R/CEBP gene module has undergone recent evolutionary selection, including Neanderthal introgression and human pathogen adaptation, connected to systemic monocyte counts. These results suggest Mtb co-opts an evolutionary recent IFN-IL6-CEBP feed-forward loop, increasing myeloid differentiation linked to severe TB in humans.

2019 ◽  
Author(s):  
Murilo Delgobo ◽  
Daniel A. G. B. Mendes ◽  
Edgar Kozlova ◽  
Edroaldo Lummertz Rocha ◽  
Gabriela F. Rodrigues-Luiz ◽  
...  

AbstractMonocyte counts are increased during human tuberculosis (TB) but it has not been determined whetherMycobacterium tuberculosis(Mtb) directly regulates myeloid commitment. We demonstrated that exposure toMtbdirects primary human CD34+cells to differentiate into monocytes/macrophages. In vitro myeloid conversion did not require type I or type II IFN signaling. In contrast,Mtbenhanced IL-6 responses by CD34+cell cultures and IL-6R neutralization inhibited myeloid differentiation and decreased mycobacterial growth in vitro. Integrated systems biology analysis of transcriptomic, proteomic and genomic data of large data sets of healthy controls and TB patients established the existence of a myeloidIL-6/IL6R/CEBPgene module associated with disease severity. Furthermore, genetic and functional analysis revealed theIL6/IL6R/CEBPgene module has undergone recent evolutionary selection, including Neanderthal introgression and human pathogen adaptation, connected to systemic monocyte counts. These results suggestMtbco-opts an evolutionary recent IFN-IL6-CEBP feed-forward loop, increasing myeloid differentiation linked to severe TB in humans.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 549-549
Author(s):  
Ly P. Vu ◽  
Xinyang Zhao ◽  
Fabiana Perna ◽  
Stephen D. Nimer

Abstract Abstract 549 RUNX1 (also known as AML1) is the DNA binding component of the Core Binding Factor (CBF)-transcriptional regulatory complex, which plays an important role in hematopoiesis. Upon binding to the common binding sequence -PyGpyGGTPy (Py = pyrimidine) in the regulatory regions of promoters and enhancers of its target genes, RUNX1 acts either as an activator or a repressor, depending on promoter context and its interacting partners. Thus, modulation of the network of RUNX1 interactions can influence hematopoiesis. However, how RUNX1 selects one set of partners over another to assemble a functional complex is largely unknown. Posttranslational modifications, including ubiquitination, phosphorylation, acetylation and methylation, present a viable mean to fine-tune its functions. Here we shown that RUNX1 is arginine methylated at a specific residue, R223, by PRMT4, a type I arginine methyltransferase generally thought of as a co-activator molecule. We hypothesized that arginine methylation of RUNX1 by PRMT4 affects its protein-protein interactions, therefore, to identify proteins that specifically interact with unmethylated and/or methylated-R223 RUNX1, in an unbiased manner, we performed a peptide pull-down experiment, using a methyl-R223 RUNX1 peptide and an unmodified RUNX1 peptide as bait, following by mass spectrometry analysis. We identified several proteins that preferentially interacted with the R223 methyl peptide, but focused on a novel interacting protein, DPF2 (double PhD Finger 2), which is a widely expressed member of the d4 protein family, characterized by the presence of a tandem plant-homodomain (PHD domain). We confirmed the specific interaction between methylated-RUNX1 with DPF2 in vivo by immunoprecipitation. We generated an antibody specific for the R223 methylated-RUNX1 protein, and found that RUNX1 methylation decreases during the myeloid differentiation of human CD34+ haematopoietic stem/progenitor cells (HSPCs), without a change in the total level of RUNX1 protein, and this occurred co-incident with a downregulation of PRMT4 protein expression. Having determined that PRMT4 expression declines during myeloid differentiation, we examined the role of PRMT4 in this process, using short hairpin RNAs to knockdown PRMT4 expression in CD34+ cells. Knockdown of PRMT4 accelerates the myeloid differentiation of the cells, whereas overexpression of PRMT4 in human CD34+ cells blocked their myeloid differentiation. When analyzing the expression of several “master” regulators of myeloid differentiation, we identified microRNA-223, a myeloid specific microRNA, as a common target gene of PRMT4 and RUNX1. Furthermore, we have found that by promoting the assembly of a functional complex containing R223 methylRUNX1 and DPF2 at the transcriptional regulatory region of the microRNA-223 promoter, PRMT4 can control miR-223 expression and myeloid differentiation. We have verified the role of DPF2 in this process, as DPF2 represses miR-223 expression and loss of DPF2 promotes myeloid differentiation. Thus, DPF2 acts in a common pathway with PRMT4 to regulate myeloid differentiation. In conclusion, our study elucidates a novel mechanism, where the arginine methylation of RUNX1 regulates its recruitment of interacting partner(s). In addition to demonstrating that PRMT4 can trigger repression of gene expression, we have identified a novel role for PRMT4 (aka CARM1) in myeloid differentiation. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (8) ◽  
pp. 1596-1606 ◽  
Author(s):  
Ayten Kandilci ◽  
Gerard C. Grosveld

Abstract Forced expression of MN1 in primitive mouse hematopoietic cells causes acute myeloid leukemia and impairs all-trans retinoic acid-induced granulocytic differentiation. Here, we studied the effects of MN1 on myeloid differentiation and proliferation using primary human CD34+ hematopoietic cells, lineage-depleted mouse bone marrow cells, and bipotential (granulocytic/monocytic) human acute myeloid leukemia cell lines. We show that exogenous MN1 stimulated the growth of CD34+ cells, which was accompanied by enhanced survival and increased cell cycle traverse in cultures supporting progenitor cell growth. Forced MN1 expression impaired both granulocytic and monocytic differentiation in vitro in primary hematopoietic cells and acute myeloid leukemia cell lines. Endogenous MN1 expression was higher in human CD34+ cells compared with both primary and in vitro–differentiated monocytes and granulocytes. Microarray and real-time reverse-transcribed polymerase chain reaction analysis of MN1-overexpressing CD34+ cells showed down-regulation of CEBPA and its downstream target genes. Reintroduction of conditional and constitutive CEBPA overcame the effects of MN1 on myeloid differentiation and inhibited MN1-induced proliferation in vitro. These results indicate that down-regulation of CEBPA activity contributes to MN1-modulated proliferation and impaired myeloid differentiation of hematopoietic cells.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2063-2063
Author(s):  
Naoya Uchida ◽  
Claire Drysdale ◽  
Morgan Yapundich ◽  
Jackson Gamer ◽  
Tina Nassehi ◽  
...  

Hematopoietic stem cell gene therapy for hemoglobin disorders, such as sickle cell disease, requires high-level gene marking and robust therapeutic globin expression in erythroid cells (>20% of γ- or β-globin production) for widespread successful clinical application. We previously demonstrated that lentiviral transduction of a truncated human erythropoietin receptor (thEpoR) gene allows for erythropoietin-dependent selective proliferation of gene-modified human erythroid cells during in vitro differentiation (ASH 2017). In this study, we sought to evaluate whether thEpoR can enhance the phenotypic effect of a therapeutic vector in erythroid cells in xenograft mouse and autologous non-human primate transplantation models. To investigate this hypothesis, we designed lentiviral vectors encoding both thEpoR and BCL11A-targeting micro RNA-adapted short hairpin RNA (shmiBCL11A), driven off an erythroid specific ankyrin 1 (ANK1) promoter. Both selective proliferation and high-level fetal hemoglobin (HbF) induction were observed in in vitro erythroid differentiation cultures using transduced human CD34+ cells. Healthy donor CD34+ cells were transduced with shmiBCL11A vector, thEpoR-shmiBCL11A vector, and GFP vector (control). Transduced cells were transplanted into immunodeficient NBSGW mice. Five months post-transplant, xenograft bone marrow cells were evaluated for human cell engraftment (human CD45+) and vector copy number (VCN) in both human CD34+ progenitor cells and glycophorin A+ (GPA+) erythroid cells. HbF production was also measured in GPA+ erythroid cells by reverse phase HPLC. We observed efficient transduction in transduced CD34+ cells in vitro (VCN 2.1-5.1) and similar human cell engraftment among all groups (84-89%). The VCN with thEpoR-shmiBCL11A transduction was 3-fold higher in human erythroid cells when compared to CD34+ cells (p<0.01), but not with shmiBCL11A or GFP vectors. HbF levels were significantly elevated in thEpoR-shmiBCL11A vector (43±6%, p<0.01) when compared to no transduction control (1±0%), but not for either shmiBCL11A vector (3±1%) or GFP vector (1±0%). These data demonstrate selective proliferation of gene-modified erythroid cells, as well as enhanced HbF induction with thEpoR-shmiBCL11A transduction. We then performed autologous rhesus CD34+ cell transplantation using either shmiBCL11A vector (142562 and RA0706, n=2, compared to a GPA promoter-derived shmiBCL11A vector) or thEpoR-shmiBCL11A vector (ZL50 and ZM24, n=2, compared to a Venus-encoding vector). Transduced CD34+ cells were transplanted into autologous rhesus macaques following 2x5Gy total body irradiation. Efficient transduction was observed in CD34+ cells in vitro among all 4 macaques (VCN 3.8-8.7) using a high-density culture protocol (Uchida N, Mol Ther Methods Clin Dev. 2019). In shmiBCL11A transduction animals, engraftment of gene-modified cells (VCN 0.2-1.0) and robust HbF induction (14-16%) were observed 1 month post-transplant. However, VCN and HbF levels were reduced down to VCN ~0.1 and HbF ~0.4% in both animals 6 months post-transplant. In contrast, a thEpoR-shmiBCL11A transduction animal (ZL50) resulted in engraftment of gene-modified cells (VCN 0.8-1.0) and robust HbF induction (~18%) 1 month post-transplant, with both gene marking and HbF levels remaining high at VCN 0.6-0.7 and HbF ~15% 4 months post-transplant. These data suggest that shmiBCL11A transduction results in transient HbF induction in gene-modified erythroid cells, while thEpoR-based selective advantage allows for sustained HbF induction with shmiBCL11A. In summary, we developed erythroid-specific thEpoR-shmiBCL11A expressing vectors, enhancing HbF induction in gene-modified erythroid cells in xenograft mice and rhesus macaques. While further in vivo studies are desirable, the use of thEpoR appears to provide a selective advantage for gene-modified erythroid cells in gene therapy strategies for hemoglobin disorders. Disclosures No relevant conflicts of interest to declare.


2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Susmita Sahoo ◽  
Sol Misener ◽  
Tina Thorne ◽  
Meredith Millay ◽  
Kathryn M Schultz ◽  
...  

Local transplantation of human CD34+ hematopoietic stem cells has been shown to promote neovascularization in pre-clinical studies in models of myocardial and limb ischemia. In early phase clinical trials, transplantation of CD34+ cells has been associated with reduced angina, improved exercise time and reduced amputation rates. Several studies have suggested that paracrine effects by these pro-angiogenic cells mediate the effects induced by cell transplantation. We hypothesized that CD34+ cells secrete exosomes (Exo), which mediate at least a part of the therapeutic function of the cells. Methods and Results: We isolated Exo from the conditioned media of adult human peripheral blood (PB) CD34+ cells. The angiogenic and therapeutic potency of CD34+ Exo was compared with the intact CD34+ cells and also with PB mononuclear cell (MNC) Exo. Exo from both CD34+ cells and MNC are 50–90nm in size, have cup shaped morphology, and carry known Exo-marker proteins such as CD63, TSG101 and Annexin V as shown by electron microscopy, Western blot and flow cytometry. Compared to CD34+ cells or MNC Exo, CD34+ Exo significantly induces in vitro angiogenic activities such as viability, proliferation and tube formation of HUVECs on matrigel- in a dose dependent manner. In vivo, CD34+ Exo stimulated significant neovascularization in mouse corneal angiogenesis assay (14±4 mm v MNC Exo, 4±1 mm, p<0.01) and incorporation of endothelial (CD31+) cells in mouse matrigel-plug assay (6±1.7% v CD34+ cells, 2±0.8%, p<0.01). Finally, in a mouse model of hind limb ischemia (HLI), CD34+ Exo significantly improved perfusion (ratio: 1.01±0.04 v 0.57±0.1, P<0.05), increased capillary density (1.8±0.3/HPF v 0.9±0.1/HPF, p<0.001) and prevented ischemic leg amputation (16% v 100%), as compared with MNC Exo. Conclusions: These data demonstrate that CD34+ Exo induce angiogenic activity and ischemic tissue repair in the absence of CD34+ cells, and suggest that Exo represent important mediators of the therapeutic effects associated with CD34+ cell therapy. We speculate that Exo derived from CD34+ cells may represent a significant component of the paracrine effect of progenitor-cell transplantation for therapeutic angiogenesis.


Blood ◽  
1991 ◽  
Vol 78 (12) ◽  
pp. 3192-3199 ◽  
Author(s):  
T Egeland ◽  
R Steen ◽  
H Quarsten ◽  
G Gaudernack ◽  
YC Yang ◽  
...  

Abstract CD34+ cells isolated from bone marrow or umbilical cord blood from healthy donors were studied for proliferation and differentiation in liquid cultures in the presence of recombinant human granulocyte- monocyte colony-stimulating factor (GM-CSF), granulocyte CSF (G-CSF), monocyte CSF (M-CSF), and interleukin-3 (IL-3), followed by immunophenotyping for myeloid and myeloid-associated cell surface markers. IL-3, either alone or together with GM-CSF, G-CSF, or M-CSF, induced, on average, 50-fold cell multiplication, GM-CSF five fold to 10-fold, and G-CSF and M-CSF less than fivefold. Cells from cultures stimulated with GM-CSF, G-CSF, or M-CSF alone contained cells with a “broad” myeloid profile, “broader” than observed in cultures with IL-3. However, since IL-3 induced rapid cell multiplication, high numbers of cells expressing early (CD13, CD33) and late myeloid markers (CD14, CD15) were recovered. The presence of other CSFs together with IL-3 did not alter the IL-3-induced effect on the cells. When 5,000 CD34+ cells were cultured with IL-3 alone, the cultures still contained 2,000 to 5,000 CD34+ cells after 14 days of culture, while cells cultured with GM-CSF, G-CSF, or M-CSF contained less than 1,000 CD34+ cells. Furthermore, 1,000 to 3,000 cells were positive for the megakaryocytic lineage marker CD41b after cultures with GM-CSF or IL-3, while cultures with G-CSF or M-CSF did not contain detectable numbers of CD41b+ cells. Finally, erythroid cells could also be generated from purified CD34+ cells. The results show that IL-3 and GM-CSF can induce rapid proliferation of purified CD34+ cells in vitro with differentiation to multiple myeloid lineages, while certain subsets maintain expression of CD34.


Blood ◽  
2000 ◽  
Vol 95 (9) ◽  
pp. 2813-2820 ◽  
Author(s):  
Lisa Gallacher ◽  
Barbara Murdoch ◽  
Dongmei M. Wu ◽  
Francis N. Karanu ◽  
Mike Keeney ◽  
...  

Recent evidence indicates that human hematopoietic stem cell properties can be found among cells lacking CD34 and lineage commitment markers (CD34−Lin−). A major barrier in the further characterization of human CD34− stem cells is the inability to detect this population using in vitro assays because these cells only demonstrate hematopoietic activity in vivo. Using cell surface markers AC133 and CD7, subfractions were isolated within CD34−CD38−Lin− and CD34+CD38−Lin− cells derived from human cord blood. Although the majority of CD34−CD38−Lin− cells lack AC133 and express CD7, an extremely rare population of AC133+CD7− cells was identified at a frequency of 0.2%. Surprisingly, these AC133+CD7− cells were highly enriched for progenitor activity at a frequency equivalent to purified fractions of CD34+ stem cells, and they were the only subset among the CD34−CD38−Lin− population capable of giving rise to CD34+ cells in defined liquid cultures. Human cells were detected in the bone marrow of non-obese/severe combined immunodeficiency (NOD/SCID) mice 8 weeks after transplantation of ex vivo–cultured AC133+CD7− cells isolated from the CD34−CD38−Lin− population, whereas 400-fold greater numbers of the AC133−CD7− subset had no engraftment ability. These studies provide novel insights into the hierarchical relationship of the human stem cell compartment by identifying a rare population of primitive human CD34− cells that are detectable after transplantation in vivo, enriched for in vitro clonogenic capacity, and capable of differentiation into CD34+ cells.


Blood ◽  
1999 ◽  
Vol 93 (8) ◽  
pp. 2525-2532 ◽  
Author(s):  
Xingwei Sui ◽  
Kohichiro Tsuji ◽  
Yasuhiro Ebihara ◽  
Ryuhei Tanaka ◽  
Kenji Muraoka ◽  
...  

Abstract We have recently shown that stimulation of glycoprotein (gp) 130, the membrane-anchored signal transducing receptor component of IL-6, by a complex of human soluble interleukin-6 receptor (sIL-6R) and IL-6 (sIL-6R/IL-6), potently stimulates the ex vivo expansion as well as erythropoiesis of human stem/progenitor cells in the presence of stem cell factor (SCF). Here we show that sIL-6R dose-dependently enhanced the generation of megakaryocytes (Mks) (IIbIIIa-positive cells) from human CD34+ cells in serum-free suspension culture supplemented with IL-6 and SCF. The sIL-6R/IL-6 complex also synergistically acted with IL-3 and thrombopoietin (TPO) on the generation of Mks from CD34+ cells, whereas the synergy of IL-6 alone with TPO was barely detectable. Accordingly, the addition of sIL-6R to the combination of SCF + IL-6 also supported a substantial number of Mk colonies from CD34+ cells in serum-free methylcellulose culture, whereas SCF + IL-6 in the absence of sIL-6R rarely induced Mk colonies. The addition of monoclonal antibodies against gp130 to the suspension and clonal cultures completely abrogated the megakaryopoiesis induced by sIL-6R/IL-6 in the presence of SCF, whereas an anti-TPO antibody did not, indicating that the observed megakaryopoiesis by sIL-6R/IL-6 is a response to gp130 signaling and independent of TPO. Furthermore, human CD34+ cells were subfractionated into two populations of IL-6R–negative (CD34+ IL-6R−) and IL-6R–positive (CD34+ IL-6R+) cells by fluorescence-activated cell sorting. The CD34+IL-6R− cells produced a number of Mks as well as Mk colonies in cultures supplemented with sIL-6R/IL-6 or TPO in the presence of SCF. In contrast, CD34+ IL-6R+cells generated much less Mks and lacked Mk colony forming activity under the same conditions. Collectively, the present results indicate that most of the human Mk progenitors do not express IL-6R, and that sIL-6R confers the responsiveness of human Mk progenitors to IL-6. Together with the presence of functional sIL-6R in human serum and relative unresponsiveness of human Mk progenitors to IL-6 in vitro, current results suggest that the role of IL-6 may be mainly mediated by sIL-6R, and that the gp130 signaling initiated by the sIL-6R/ IL-6 complex is involved in human megakaryopoiesis in vivo.


1996 ◽  
Vol 183 (3) ◽  
pp. 837-845 ◽  
Author(s):  
X Sui ◽  
K Tsuji ◽  
S Tajima ◽  
R Tanaka ◽  
K Muraoka ◽  
...  

Erythropoietin (EPO) is the primary humoral regulator of erythropoiesis and no other factor has previously been reported to support proliferation and terminal maturation of erythroid cells from hemopoietic stem cells. Here we show that stimulation of glycoprotein (gp130) by a combination of recombinant human soluble interleukin 6 receptor (sIL-6R) and IL-6 but not sIL-6R or IL-6 alone can support proliferation, differentiation, and terminal maturation of erythroid cells in the absence of EPO from purified human CD34+ cells in suspension culture containing stem cell factor (SCF). A number of erythroid bursts and mixed erythroid colonies also developed in methylcellulose culture under the same combination. The addition of anti-gp130 monoclonal antibodies but not anti-EPO antibody to the same culture completely abrogated the generation of erythroid cells. These results clearly demonstrate that mature erythroid cells can be emerged from hemopoietic progenitors without EPO in vitro. Together with the previous reports that human sera contain detectable levels of sIL-6R, IL-6, and SCF, current data suggest that gp130 signaling in association with c-kit activation may play a role in human erythropoiesis in vivo.


Blood ◽  
2007 ◽  
Vol 110 (3) ◽  
pp. 937-945 ◽  
Author(s):  
Felicia Goodrum ◽  
Matthew Reeves ◽  
John Sinclair ◽  
Kevin High ◽  
Thomas Shenk

AbstractLatency enables human cytomegalovirus (HCMV) to persist in the hematopoietic cells of infected individuals indefinitely and prevents clearance of the pathogen. Despite its critical importance to the viral infectious cycle, viral mechanisms that contribute to latency have not been identified. We compared the ability of low-passage clinical and laboratory-adapted strains of HCMV to establish a latent infection in primary human CD34+ cells. The low-passage strains, Toledo and FIX, established an infection with the hallmarks of latency, whereas the laboratory strains, AD169 and Towne, replicated producing progeny virus. We hypothesized that ULb′ region of the genome, which is unique to low-passage strains, may encode a latency-promoting activity. We created and analyzed recombinant viruses lacking segments or individual open reading frames (ORFs) in the ULb′ region. One 5-kb segment, and more specifically the UL138 ORF, was required for HCMV to establish and/or maintain a latent infection in hematopoietic progenitor cells infected in vitro. This is the first functional demonstration of a virus-coded sequence required for HCMV latency. Importantly, UL138 RNA was expressed in CD34+ cells and monocytes from HCMV-seropositive, healthy individuals. UL138 might be a target for antivirals against latent virus.


Sign in / Sign up

Export Citation Format

Share Document