scholarly journals Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Emanuel Cura Costa ◽  
Leo Otsuki ◽  
Aida Rodrigo Albors ◽  
Elly M Tanaka ◽  
Osvaldo Chara

Axolotls are uniquely able to resolve spinal cord injuries, but little is known about the mechanisms underlying spinal cord regeneration. We previously found that tail amputation leads to reactivation of a developmental-like program in spinal cord ependymal cells (Rodrigo Albors et al., 2015), characterized by a high-proliferation zone emerging 4 days post-amputation (Rost et al., 2016). What underlies this spatiotemporal pattern of cell proliferation, however, remained unknown. Here, we use modelling, tightly linked to experimental data, to demonstrate that this regenerative response is consistent with a signal that recruits ependymal cells during ~85 hours after amputation within ~830mm of the injury. We adapted FUCCI technology to axolotls (AxFUCCI) to visualize cell cycles in vivo. AxFUCCI axolotls confirmed the predicted appearance time and size of the injury-induced recruitment zone and revealed cell cycle synchrony between ependymal cells. Our modeling and imaging move us closer to understanding bona fide spinal cord regeneration.

Author(s):  
Emanuel Cura Costa ◽  
Aida Rodrigo Albors ◽  
Elly M. Tanaka ◽  
Osvaldo Chara

AbstractAxolotls are uniquely able to resolve spinal cord injuries, but little is known about the mechanisms underlying spinal cord regeneration. We found that tail amputation leads to reactivation of a developmental-like program in spinal cord ependymal cells (Rodrigo Albors et al., 2015). We also identified a high-proliferation zone and demonstrated that cell cycle acceleration is the major driver of regenerative growth (Rost et al., 2016). What underlies this spatiotemporal pattern of cell proliferation, however, remained unknown. Here, using a modelling approach supported by experimental data, we show that the proliferative response in the regenerating spinal cord is consistent with a signal that starts recruiting cells 24 hours after amputation and spreads about one millimeter from the injury. Finally, our model predicts that the observed shorter S phase can explain spinal cord outgrowth in the first four days of regeneration but after, G1 shortening is also necessary to explain outgrowth dynamics.


2020 ◽  
Author(s):  
Diane Pelzer ◽  
Lauren S. Phipps ◽  
Raphael Thuret ◽  
Syed Murtuza Baker ◽  
Karel Dorey

SummaryMammals have limited tissue regeneration capabilities, particularly in the case of the central nervous system. Spinal cord injuries are often irreversible and lead to the loss of motor and sensory function below the site of the damage [1]. In contrast, amphibians such as Xenopus tadpoles can regenerate a fully functional tail, including their spinal cord, following amputation [2,3]. A hallmark of spinal cord regeneration is the re-activation of Sox2/3+ progenitor cells to promote regrowth of the spinal cord and the generation of new neurons [4,5]. In axolotls, this increase in proliferation is tightly regulated as progenitors switch from a neurogenic to a proliferative division via the planar polarity pathway (PCP) [6–8]. How the balance between self-renewal and differentiation is controlled during regeneration is not well understood. Here, we took an unbiased approach to identify regulators of the cell cycle expressed specifically in X.tropicalis spinal cord after tail amputation by RNAseq. This led to the identification of Foxm1 as a potential key transcription factor for spinal cord regeneration. Foxm1-/- X.tropicalis tadpoles develop normally but cannot regenerate their spinal cords. Using single cell RNAseq and immunolabelling, we show that foxm1+ cells in the regenerating spinal cord undergo a transient but dramatic change in the relative length of the different phases of the cell cycle, suggesting a change in their ability to differentiate. Indeed, we show that Foxm1 does not regulate the rate of progenitor proliferation but is required for neuronal differentiation leading to successful spinal cord regeneration.


2021 ◽  
Author(s):  
R. Chevreau ◽  
H Ghazale ◽  
C Ripoll ◽  
C Chalfouh ◽  
Q Delarue ◽  
...  

AbstractEpendymal cells with stem cell properties reside in the adult spinal cord around the central canal. They rapidly activate and proliferate after spinal cord injury, constituting a source of new cells. They produce neurons and glial cells in lower vertebrates but they mainly generate glial cells in mammals. The mechanisms underlying their activation and their glial-biased differentiation in mammals remain ill-defined. This represents an obstacle to control these cells. We addressed this issue using RNA profiling of ependymal cells before and after injury. We found that these cells activate STAT3 and ERK/MAPK signaling during injury and downregulate cilia-associated genes and FOXJ1, a central transcription factor in ciliogenesis. Conversely, they upregulate 510 genes, six of them more than 20 fold, namely Crym, Ecm1, Ifi202b, Nupr1, Rbp1, Thbs2 and Osmr. OSMR is the receptor for the inflammatory cytokine oncostatin (OSM) and we studied its regulation and role using neurospheres derived from ependymal cells. We found that OSM induces strong OSMR and p-STAT3 expression together with proliferation reduction and astrocytic differentiation. Conversely, production of oligodendrocyte-lineage OLIG1+ cells was reduced. OSM is specifically expressed by microglial cells and was strongly upregulated after injury. We observed microglial cells apposed to ependymal cells in vivo and co-cultures experiments showed that these cells upregulate OSMR in neurosphere cells. Collectively, these results support the notion that microglial cells and OSMR/OSM pathway regulate ependymal cells in injury. In addition, the generated high throughput data provides a unique molecular resource to study how ependymal cell react to spinal cord lesion.


2019 ◽  
Vol 116 (15) ◽  
pp. 7483-7492 ◽  
Author(s):  
Amanda Marchini ◽  
Andrea Raspa ◽  
Raffaele Pugliese ◽  
Marina Abd El Malek ◽  
Valentina Pastori ◽  
...  

Three-dimensional cell cultures are leading the way to the fabrication of tissue-like constructs useful to developmental biology and pharmaceutical screenings. However, their reproducibility and translational potential have been limited by biomaterial and culture media compositions, as well as cellular sources. We developed a construct comprising synthetic multifunctionalized hydrogels, serum-free media, and densely seeded good manufacturing practice protocol-grade human neural stem cells (hNSC). We tracked hNSC proliferation, differentiation, and maturation into GABAergic, glutamatergic, and cholinergic neurons, showing entangled electrically active neural networks. The neuroregenerative potential of the “engineered tissue” was assessed in spinal cord injuries, where hNSC-derived progenitors and predifferentiated hNSC progeny, embedded in multifunctionalized hydrogels, were implanted. All implants decreased astrogliosis and lowered the immune response, but scaffolds with predifferentiated hNSCs showed higher percentages of neuronal markers, better hNSC engraftment, and improved behavioral recovery. Our hNSC-construct enables the formation of 3D functional neuronal networks in vitro, allowing novel strategies for hNSC therapies in vivo.


2019 ◽  
Vol 41 (1-2) ◽  
pp. 112-122 ◽  
Author(s):  
Consuelo Anguita-Salinas ◽  
Mario Sánchez ◽  
Rodrigo A. Morales ◽  
María Laura Ceci ◽  
Diego Rojas-Benítez ◽  
...  

The study of spinal cord regeneration using diverse animal models, which range from null to robust regenerative capabilities, is imperative for understanding how regeneration evolved and, eventually, to treat spinal cord injury and paralysis in humans. In this study, we used electroablation to fully transect the spinal cord of zebrafish larvae (3 days postfertilization) and examined regeneration of the tissue over time. We used transgenic lines to follow immune cells, oligodendrocytes, and neurons in vivo during the entire regenerative process. We observed that immune cells are recruited to the injury site, oligodendrocytes progenitor cells (olig2-expressing cells) invade, and axons cross the gap generated upon damage from anterior to reinnervate caudal structures. Together with the recovery of cell types and structures, a complete reversal of paralysis was observed in the lesioned larvae indicating functional regeneration. Finally, using transplantation to obtain mosaic larvae with single-labeled neurons, we show that severed spinal axons exhibited varying regenerative capabilities and plasticity depending on their original dorsoventral position in the spinal cord.


2020 ◽  
Author(s):  
Lili Zhou ◽  
Brooke Burris ◽  
Ryan Mcadow ◽  
Mayssa H. Mokalled

ABSTRACTUnlike mammals, adult zebrafish undergo spontaneous recovery after major spinal cord injury. Whereas scarring presents a roadblock for mammalian spinal cord repair, glial cells in zebrafish form a bridge across severed spinal cord tissue to facilitate regeneration. Here, we performed FACS sorting and genome-wide profiling to determine the transcriptional identity of purified bridging glia. We found that Yap-Ctgf signaling activates epithelial to mesenchymal transition (EMT) in localized niches of ependymal cells to promote glial bridging and regeneration. Preferentially activated in early bridging glia, Yap is required for the expression of the glial bridging factor Ctgfa and for functional spinal cord repair. Ctgfa regulation is controlled by an injury responsive enhancer element that drives expression in early bridging glia after injury. Yap-Ctgf signaling activates a mesenchymal transcriptional program that drives glial bridging. This study revealed the molecular signatures of bridging glia and identified an injury responsive gene regulatory network that promotes spinal cord regeneration in zebrafish.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 428-428
Author(s):  
Si Chen ◽  
Noemi A. Zambetti ◽  
Zhen Ping ◽  
Keane Kenswil ◽  
Maria Mylona ◽  
...  

Abstract Primary alterations of the mesenchymal niche can induce myelodysplasia and acute myeloid leukemia in mouse models, introducing a concept of niche-driven leukemogenesis (Raaijmakers et al, Nature 2010). The molecular mechanisms and human relevance of this concept, however, have remained elusive. We addressed these key questions by modelling Shwachman-Diamond-Syndrome (SDS), a human monogenic congenital disorder caused by loss-of function mutation in the SBDS gene and characterized by skeletal defects, bone marrow failure and a striking propensity for leukemic evolution. Targeted Sbds deletion from mesenchymal progenitor cells (MPCs) in mice (OsxCre/+Sbdsf/f; OCSf/f) resulted in bone abnormalities faithfully recapitulating human disease, including short stature and early-onset osteoporosis. Skeletal defects were associated with genotoxic stress in hematopoietic stem and progenitor cells (HSPCs) as demonstrated by mitochondrial membrane hyperpolarization, oxidative stress, DNA damage and cell cycle checkpoint activation (transcriptional modulation of DNA damage response/repair pathways and G0-G1 cell cycle arrest). DNA damage could be partially rescued by in vivo administration of the ROS scavenger N-acetylcysteine supporting the notion of niche induced DNA damage in HSPCs induced by mitochondria-derived superoxide radicals. Mechanistically, Sbds deficiency caused activation of the p53 tumor suppressorpathway in MPCs (upregulation of P53 and transcriptional activation of downstream targets (GSEA). Genetic deletion of Trp53 from MPCs (Osxcre/+Sbdsf/fTrp53f/f mice) rescued the skeletal phenotype and genotoxic stress in HSPCs. Comparison of the transcriptome of MPCs from OCSf/f mice to their highly FACS-purified mesenchymal (CD45-CD235-7AAD-CD31-CD271+CD105+) human equivalents from SDS patients (RNAseq; n=5) demonstrated a striking overlap in disrupted gene programs (GSEA), including ribosome biogenesis and significant overexpression of the proinflammatory molecules such as S100A8 and S100A9, bona fide p53 downstream targets. Activation of p53 and inflammatory molecules was an MPC-autonomous consequence of Sbds depletion as demonstrated by ex vivo knockdown of the gene in OP9 cells. S100A8/A9 overexpression and secretion from MPCs from OCSf/f mice was confirmed by FCM and serum ELISA. Exposure of HSPCs to recombinant murine S100A8/9 resulted in increased DNA damage and apoptosis associated with transcriptional activation of TLR4 downstream signaling, a bona fide S100A8A9 receptor. In vivo TLR4 blockade by neutralizing antibodies resulted in reduced γH2AX foci in HSPCs from OCSf/f mice, in support of the existence of a Tpr53-S100A8/A9-TLR4 axis driving genotoxic stress. Formal demonstration that niche-derived S100A8/9 is sufficient to drive genotoxic stress in HSPCs was provided by transplantation of wild-type hematopoietic cells into recipient S100A8/A9 transgenic mice (Cheng et al., 2008) resulting in accumulation of mitochondrial superoxide radicals and DNA-damage in wild-type HSPCs. Finally, to further define the clinical relevance of this inflammatory MPC-HSPC axis to human disease, we performed massive parallel RNA-sequencing of FACS purified mesenchymal cells from homogeneously treated low-risk MDS patients (n=45). Overexpression of S100A8 and S100A9 in MPCs(confirmed by IHC) was found in a considerable subset of patients (17/45; 38%). S100A8/9+ mesenchymal cells displayed transcriptional activation of p53 and TLR programs, in line with findings in the mouse model. Strikingly, patients in the niche-S100A8/9+ group displayed a higher frequency of leukemia evolution (29.4% vs. 14.2%) with significantly shorter evolution time (average 3.4 (1-7.5) vs 18.5 (7-40); p=.03) and progression-free survival (median 11.5 vs. 53 months, p=.03), independent of established prognostic factors and risk classification systems. Collectively, the data define niche-HSPC inflammatory signaling through the p53-S100A8/A9-TLR axis as an actionable determinant of genotoxic stress and disease outcome in human preleukemia, opening the way to niche-instructed, therapeutic targeting to attenuate leukemic evolution. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Francis Cliche ◽  
Jean-Marc Mac-Thiong ◽  
Yvan Petit

Animal models are commonly used to study spinal cord injuries (SCI). These models aim to better understand the traumatic behaviour of the spinal cord in vivo. However, experimental SCI models usually simulate a posterior contusion of the spinal cord on small animals, which do not reproduce completely the SCI mechanisms in humans. The objectives of the study are: 1) to develop an experimental anterior contusion of the spinal cord on porcine models, and 2) to compare biomechanical differences between ventral and dorsal approaches. A total of 6 specimens were tested in vivo with a drop weight bench test. Impacts were produced at T10 with 5mm diameter impactor of 50g and dropped from a height of 100mm. Compression time was set to 5min for 4 specimens (2 ventral, 2 dorsal) and 60min for 1 ventral and 1 dorsal. The outcome measures were the compression displacement, blood pressure, heart rate and macroscopic inspection of the spinal cord. This is the first study proposing an animal model of anterior SCI. Preliminary results suggest that there is a biomechanical difference between ventral and dorsal contusion approaches. A new bench test especially designed for ventral contusion will allow additional tests analyzing more variables, such as the motor evoked potentials and arterial blood flow.


EBioMedicine ◽  
2016 ◽  
Vol 13 ◽  
pp. 55-65 ◽  
Author(s):  
Xiaofei Li ◽  
Elisa M. Floriddia ◽  
Konstantinos Toskas ◽  
Karl J.L. Fernandes ◽  
Nicolas Guérout ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document