scholarly journals Novel cell types and developmental lineages revealed by single-cell RNA-seq analysis of the mouse crista ampullaris

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Brent A Wilkerson ◽  
Heather L Zebroski ◽  
Connor R Finkbeiner ◽  
Alex D Chitsazan ◽  
Kylie E Beach ◽  
...  

This study provides transcriptomic characterization of the cells of the crista ampullaris, sensory structures at the base of the semicircular canals that are critical for vestibular function. We performed single cell RNA-seq on ampullae microdissected from E16, E18, P3 and P7 mice. Cluster analysis identified the hair cells, support cells and glia of the crista as well as dark cells and other nonsensory epithelial cells of the ampulla, mesenchymal cells, vascular cells, macrophages and melanocytes. Cluster-specific expression of genes predicted their spatially restricted domains of gene expression in the crista and ampulla. Analysis of cellular proportions across developmental time showed dynamics in cellular composition. The new cell types revealed by single cell RNA-seq could be important for understanding crista function and the markers identified in this study will enable the examination of their dynamics during development and disease.

2019 ◽  
Author(s):  
Dylan R. Farnsworth ◽  
Lauren Saunders ◽  
Adam C. Miller

ABSTRACTThe ability to define cell types and how they change during organogenesis is central to our understanding of animal development and human disease. Despite the crucial nature of this knowledge, we have yet to fully characterize all distinct cell types and the gene expression differences that generate cell types during development. To address this knowledge gap, we produced an Atlas using single-cell RNA-sequencing methods to investigate gene expression from the pharyngula to early larval stages in developing zebrafish. Our single-cell transcriptome Atlas encompasses transcriptional profiles from 44,102 cells across four days of development using duplicate experiments that confirmed high reproducibility. We annotated 220 identified clusters and highlighted several strategies for interrogating changes in gene expression associated with the development of zebrafish embryos at single-cell resolution. Furthermore, we highlight the power of this analysis to assign new cell-type or developmental stage-specific expression information to many genes, including those that are currently known only by sequence and/or that lack expression information altogether. The resulting Atlas is a resource of biologists to generate hypotheses for genetic (mutant) or functional analysis, to launch an effort to define the diversity of cell-types during zebrafish organogenesis, and to examine the transcriptional profiles that produce each cell type over developmental time.


2017 ◽  
Author(s):  
Garth R. Ilsley ◽  
Ritsuko Suyama ◽  
Takeshi Noda ◽  
Nori Satoh ◽  
Nicholas M. Luscombe

AbstractSingle-cell RNA-seq has been established as a reliable and accessible technique enabling new types of analyses, such as identifying cell types and studying spatial and temporal gene expression variation and change at single-cell resolution. Recently, single-cell RNA-seq has been applied to developing embryos, which offers great potential for finding and characterising genes controlling the course of development along with their expression patterns. In this study, we applied single-cell RNA-seq to the 16-cell stage of the Ciona embryo, a marine chordate and performed a computational search for cell-specific gene expression patterns. We recovered many known expression patterns from our single-cell RNA-seq data and despite extensive previous screens, we succeeded in finding new cell-specific patterns, which we validated by in situ and single-cell qPCR.


2017 ◽  
Author(s):  
Arnau Sebé-Pedrós ◽  
Elad Chomsky ◽  
Baptiste Saudememont ◽  
Marie-Pierre Mailhe ◽  
Flora Pleisser ◽  
...  

A hallmark of animal evolution is the emergence and diversification of cell type-specific transcriptional states. But systematic and unbiased characterization of differentiated gene regulatory programs was so far limited to specific tissues in a few model species. Here, we perform whole-organism single cell transcriptomics to map cell types in the cnidarian Nematostella vectensis, a non-bilaterian animal that display complex tissue-level bodyplan organization. We uncover high diversity of transcriptional states in Nematostella, demonstrating cell type-specific expression for 35% of the genes and 51% of the transcription factors (TFs) detected. We identify eight broad cell clusters corresponding to cell classes such as neurons, muscles, cnidocytes, or digestive cells. These clusters comprise multiple cell modules expressing diverse and specific markers, uncovering in particular a rich repertoire of cells associated with neuronal markers. TF expression and sequence analysis defines the combinatorial code that underlies this cell-specific expression. It also reveals the existence of a complex regulatory lexicon of TF binding motifs encoded at both enhancer and promoters of Nematostella tissue-specific genes. Whole organism single cell RNA-seq is thereby established as a tool for comprehensive study of genome regulation and cell type evolution.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 29-29
Author(s):  
Lisa Wei ◽  
Diane Trinh ◽  
Rhonda E. Ries ◽  
Dan Jin ◽  
Richard D. Corbett ◽  
...  

Pediatric AML is a heterogeneous disease in which treatment resistance remains an unsolved problem that is responsible for most deaths (Yeung and Radich 2017). Recently we have come to learn that resistance may be driven by mechanisms that extend beyond somatic mutations and DNA methylation changes (Ghasemi et al. 2020; van Galen et al. 2019; Bell et al. 2019). Transcriptional changes within specific primitive and committed cell types in AML tumours, which may be accompanied by alterations in chromatin structure and topology, can also contribute to disease progression (Ghasemi et al. 2020). To study such changes at the single-cell level, we analyzed single-cell RNA-seq (scRNA-seq) and matched scATAC-seq data from primary, remission and/or relapse samples obtained from three pediatric AML patients enrolled in the AAML1031 clinical trial (Alpenc et al. 2016) (Figure 1). Using the 10X Genomics single-cell platforms, we profiled a total of 39,738 cells using scRNA-seq (~4,826 cells per sample, 1,571 genes per cell), and 46,580 cells and 197,128 peaks using scATAC-seq (~6,718 cells per sample, 5,628 unique reads per cell). We then integrated these data types to determine the extent to which these two modalities corroborated and/or complemented each other in analyses of these longitudinally-obtained samples. Cell subpopulations detected in scRNA-seq through Leiden clustering on a k-nearest neighbor graph were generally consistent with recent observations of malignant and normal cell types detected in the bone marrow and peripheral blood compartments (van Galen et al. 2019; Hay et al. 2018). Malignant-like subpopulations at primary and relapse stages exhibited similar levels of cell type diversity along the myeloid lineage. These included hematopoietic stem-like cells, progenitors, granulocyte-monocyte progenitors, monocytes and dendritic cell-like subpopulations. Remission samples appeared to contain normal blood cell types including natural killers (NK), B and T cells, platelets and erythrocytes, consistent with the clearance of blasts. However, we also observed putative malignant-like conventional dendritic cell subpopulations at remission (50% and 16% in the respective samples), noting that these cells displayed increased expression of genes involved in antigen presentation and lysosomal protein processing. To integrate scATAC-seq with scRNA-seq data we performed clustering of transformed and reduced scATAC-seq data through iterative latent semantic indexing (Granja et al. 2020), and aligned cells in scATAC-seq to cells from scRNA-seq data using canonical correlation analysis (Stuart et al. 2019). We observed similar patterns of T cell expansion, presence of monocyte-like populations and NK cells at remission in the scATAC-seq data. However, scRNA-seq subpopulations dominated by malignant-like cells showed variability in mapping to distinctive chromatin states, with a few notable exceptions (Figures 2 and 3). One such exception is a subpopulation in scRNA-seq, found mostly at relapse, marked by high expression of genes involved in proliferation and growth factor-mediated cellular processes such as YBX3 (binds to GM-CSF promoter), CYTL1, and EGFL7 (regulator of vasculogenesis) (Figures 3 and 4). Cells within this subpopulation mapped to two scATAC-seq clusters whose significantly more highly accessible regions were enriched for functional processes such as blood vessel remodeling and neutrophil/granulocyte activation (Figure 4). These observations are consistent with recent evidence that AML tumour cells can activate the immune system to acquire resistance (Melgar et al. 2020). The scRNA-seq subpopulation, however, did not display high expression of myeloid/granulocyte factors such as CD15, ELANE, and MPO (Figure 4), perhaps consistent with the notion that such transcriptional programs may be primed but not yet activated within these malignant cells. We thus evaluated the potential of scATAC-seq to complement scRNA-seq in understanding transcriptional changes within cell types in AML tumours. We observed that normal cell types and specific malignant cell states could occupy distinctive chromatin states. Through integrative analyses, we conclude that scATAC-seq results can add additional information to complement scRNA-seq data, including identifying nascent transcriptional programs that may be poised for activation within malignant cells. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Xianliang Hou ◽  
Yane Yang ◽  
Ping Li ◽  
Zhipeng Zeng ◽  
Wenlong Hu ◽  
...  

The liver is one of vital organs of the human body, and it plays an important role in the metabolism and detoxification. Moreover, fetal liver is one of the hematopoietic places during ontogeny. Understanding how this complex organ develops during embryogenesis will yield insights into how functional liver replacement tissue can be engineered and how liver regeneration can be promoted. Here, we combine the advantages of single-cell RNA sequencing and Spatial Transcriptomics (ST) technology for unbiased analysis of fetal livers over developmental time from 8 post-conception weeks (PCW) and 17 PCW in humans. We systematically identified nine cell types, and defined the developmental pathways of the major cell types. The results showed that human fetal livers experienced blood rapid growth and immigration during the period studied in our experiments, and identified the differentially expressed genes, and metabolic changes in the developmental process of erythroid cells. In addition, we focus on the expression of liver disease related genes, and found that 17 genes published and linked to liver disease mainly expressed in megakaryocyte and endothelial, hardly expressed in any other cell types. Together, our findings provide a comprehensive and clear understanding of the differentiation processes of all main cell types in the human fetal livers, which may provide reference data and information for liver disease treatment and liver regeneration.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ruizhu Huang ◽  
Charlotte Soneson ◽  
Pierre-Luc Germain ◽  
Thomas S.B. Schmidt ◽  
Christian Von Mering ◽  
...  

AbstracttreeclimbR is for analyzing hierarchical trees of entities, such as phylogenies or cell types, at different resolutions. It proposes multiple candidates that capture the latent signal and pinpoints branches or leaves that contain features of interest, in a data-driven way. It outperforms currently available methods on synthetic data, and we highlight the approach on various applications, including microbiome and microRNA surveys as well as single-cell cytometry and RNA-seq datasets. With the emergence of various multi-resolution genomic datasets, treeclimbR provides a thorough inspection on entities across resolutions and gives additional flexibility to uncover biological associations.


2021 ◽  
Vol 2 (3) ◽  
pp. 100705
Author(s):  
Matthew N. Bernstein ◽  
Colin N. Dewey
Keyword(s):  

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Tracy M. Yamawaki ◽  
Daniel R. Lu ◽  
Daniel C. Ellwanger ◽  
Dev Bhatt ◽  
Paolo Manzanillo ◽  
...  

Abstract Background Elucidation of immune populations with single-cell RNA-seq has greatly benefited the field of immunology by deepening the characterization of immune heterogeneity and leading to the discovery of new subtypes. However, single-cell methods inherently suffer from limitations in the recovery of complete transcriptomes due to the prevalence of cellular and transcriptional dropout events. This issue is often compounded by limited sample availability and limited prior knowledge of heterogeneity, which can confound data interpretation. Results Here, we systematically benchmarked seven high-throughput single-cell RNA-seq methods. We prepared 21 libraries under identical conditions of a defined mixture of two human and two murine lymphocyte cell lines, simulating heterogeneity across immune-cell types and cell sizes. We evaluated methods by their cell recovery rate, library efficiency, sensitivity, and ability to recover expression signatures for each cell type. We observed higher mRNA detection sensitivity with the 10x Genomics 5′ v1 and 3′ v3 methods. We demonstrate that these methods have fewer dropout events, which facilitates the identification of differentially-expressed genes and improves the concordance of single-cell profiles to immune bulk RNA-seq signatures. Conclusion Overall, our characterization of immune cell mixtures provides useful metrics, which can guide selection of a high-throughput single-cell RNA-seq method for profiling more complex immune-cell heterogeneity usually found in vivo.


2018 ◽  
Author(s):  
Kerem Wainer Katsir ◽  
Michal Linial

AbstractBackgroundIn mammals, sex chromosomes pose an inherent imbalance of gene expression between sexes. In each female somatic cell, random inactivation of one of the X-chromosomes restores this balance. While most genes from the inactivated X-chromosome are silenced, 15-25% are known to escape X-inactivation (termed escapees). The expression levels of these genes are attributed to sex-dependent phenotypic variability.ResultsWe used single-cell RNA-Seq to detect escapees in somatic cells. As only one X-chromosome is inactivated in each cell, the origin of expression from the active or inactive chromosome can be determined from the variation of sequenced RNAs. We analyzed primary, healthy fibroblasts (n=104), and clonal lymphoblasts with sequenced parental genomes (n=25) by measuring the degree of allelic-specific expression (ASE) from heterozygous sites. We identified 24 and 49 candidate escapees, at varying degree of confidence, from the fibroblast and lymphoblast transcriptomes, respectively. We critically test the validity of escapee annotations by comparing our findings with a large collection of independent studies. We find that most genes (66%) from the unified set were previously reported as escapees. Furthermore, out of the overlooked escapees, 11 are long noncoding RNA (lncRNAs).ConclusionsX-chromosome inactivation and escaping from it are robust, permanent phenomena that are best studies at a single-cell resolution. The cumulative information from individual cells increases the potential of identifying escapees. Moreover, despite the use of a limited number of cells, clonal cells (i.e., same X-chromosomes are coordinately inhibited) with genomic phasing are valuable for detecting escapees at high confidence. Generalizing the method to uncharacterized genomic loci resulted in lncRNAs escapees which account for 20% of the listed candidates. By confirming genes as escapees and propose others as candidates from two different cell types, we contribute to the cumulative knowledge and reliability of human escapees.


2020 ◽  
Author(s):  
Mohit Goyal ◽  
Guillermo Serrano ◽  
Ilan Shomorony ◽  
Mikel Hernaez ◽  
Idoia Ochoa

AbstractSingle-cell RNA-seq is a powerful tool in the study of the cellular composition of different tissues and organisms. A key step in the analysis pipeline is the annotation of cell-types based on the expression of specific marker genes. Since manual annotation is labor-intensive and does not scale to large datasets, several methods for automated cell-type annotation have been proposed based on supervised learning. However, these methods generally require feature extraction and batch alignment prior to classification, and their performance may become unreliable in the presence of cell-types with very similar transcriptomic profiles, such as differentiating cells. We propose JIND, a framework for automated cell-type identification based on neural networks that directly learns a low-dimensional representation (latent code) in which cell-types can be reliably determined. To account for batch effects, JIND performs a novel asymmetric alignment in which the transcriptomic profile of unseen cells is mapped onto the previously learned latent space, hence avoiding the need of retraining the model whenever a new dataset becomes available. JIND also learns cell-type-specific confidence thresholds to identify and reject cells that cannot be reliably classified. We show on datasets with and without batch effects that JIND classifies cells more accurately than previously proposed methods while rejecting only a small proportion of cells. Moreover, JIND batch alignment is parallelizable, being more than five or six times faster than Seurat integration. Availability: https://github.com/mohit1997/JIND.


Sign in / Sign up

Export Citation Format

Share Document