scholarly journals Targeting an anchored phosphatase-deacetylase unit restores renal ciliary homeostasis

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Janani Gopalan ◽  
Mitchell H Omar ◽  
Ankita Roy ◽  
Nelly M Cruz ◽  
Jerome Falcone ◽  
...  

Pathophysiological defects in water homeostasis can lead to renal failure. Likewise, common genetic disorders associated with abnormal cytoskeletal dynamics in the kidney collecting ducts and perturbed calcium and cAMP signaling in the ciliary compartment contribute to chronic kidney failure. We show that collecting ducts in mice lacking the A-Kinase anchoring protein AKAP220 exhibit enhanced development of primary cilia. Mechanistic studies reveal that AKAP220-associated protein phosphatase 1 (PP1) mediates this phenotype by promoting changes in the stability of histone deacetylase 6 (HDAC6) with concomitant defects in actin dynamics. This proceeds through a previously unrecognized adaptor function for PP1 as all ciliogenesis and cytoskeletal phenotypes are recapitulated in mIMCD3 knock-in cells expressing a phosphatase-targeting defective AKAP220-ΔPP1 mutant. Pharmacological blocking of local HDAC6 activity alters cilia development and reduces cystogenesis in kidney-on-chip and organoid models. These findings identify the AKAP220-PPI-HDAC6 pathway as a key effector in primary cilia development.

2021 ◽  
Author(s):  
Janani Gopalan ◽  
Mitch Omar ◽  
Ankita Roy ◽  
Nelly M. Cruz ◽  
Jerome Falcone ◽  
...  

AbstractPathophysiological defects in water homeostasis can lead to renal failure. Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic disorder associated with abnormal cytoskeletal dynamics in the kidney collecting ducts and perturbed calcium and cAMP signaling in the ciliary compartment. We show that collecting ducts in mice lacking the A-Kinase anchoring protein AKAP220 exhibit enhanced development of primary cilia. Mechanistic studies reveal that AKAP220-associated protein phosphatase 1 (PP1) mediates this phenotype by promoting changes in the stability of histone deacetylase 6 (HDAC6) with concomitant defects in actin dynamics. This proceeds through a previously unrecognized adaptor function for PP1 as all ciliogenesis and cytoskeletal phenotypes are recapitulated in mIMCD3 knock-in cells expressing a phosphatase-targeting defective AKAP220-ΔPP1 mutant. Pharmacological blocking of local HDAC6 activity alters cilia development and reduces cystogenesis in kidney-on-chip and organoid models of ADPKD. These findings identify the AKAP220-PPI-HDAC6 pathway as a key effector in primary cilia development.


2015 ◽  
Vol 112 (15) ◽  
pp. 4803-4808 ◽  
Author(s):  
Ricardo Villares ◽  
Julio Gutiérrez ◽  
Agnes Fütterer ◽  
Varvara Trachana ◽  
Fernando Gutiérrez del Burgo ◽  
...  

Nearly all vertebrate cells have a single cilium protruding from their surface. This threadlike organelle, once considered vestigial, is now seen as a pivotal element for detection of extracellular signals that trigger crucial morphogenetic pathways. We recently proposed a role for Dido3, the main product of the death inducer-obliterator (dido) gene, in histone deacetylase 6 delivery to the primary cilium [Sánchez de Diego A, et al. (2014) Nat Commun 5:3500]. Here we used mice that express truncated forms of Dido proteins to determine the link with cilium-associated disorders. We describe dido mutant mice with high incidence of perinatal lethality and distinct neurodevelopmental, morphogenetic, and metabolic alterations. The anatomical abnormalities were related to brain and orofacial development, consistent with the known roles of primary cilia in brain patterning, hydrocephalus incidence, and cleft palate. Mutant mice that reached adulthood showed reduced life expectancy, brain malformations including hippocampus hypoplasia and agenesis of corpus callosum, as well as neuromuscular and behavioral alterations. These mice can be considered a model for the study of ciliopathies and provide information for assessing diagnosis and therapy of genetic disorders linked to the deregulation of primary cilia.


2019 ◽  
Vol 167 (1) ◽  
pp. 25-39 ◽  
Author(s):  
Yuta Sato ◽  
Keiju Kamijo ◽  
Motosuke Tsutsumi ◽  
Yota Murakami ◽  
Masayuki Takahashi

Abstract Precise regulation of cytoskeletal dynamics is important in many fundamental cellular processes such as cell shape determination. Actin and microtubule (MT) cytoskeletons mutually regulate their stability and dynamics. Nonmuscle myosin II (NMII) is a candidate protein that mediates the actin–MT crosstalk. NMII regulates the stability and dynamics of actin filaments to control cell morphology. Additionally, previous reports suggest that NMII-dependent cellular contractility regulates MT dynamics, and MTs also control cell morphology; however, the detailed mechanism whereby NMII regulates MT dynamics and the relationship among actin dynamics, MT dynamics and cell morphology remain unclear. The present study explores the roles of two well-characterized NMII isoforms, NMIIA and NMIIB, on the regulation of MT growth dynamics and cell morphology. We performed RNAi and drug experiments and demonstrated the NMII isoform-specific mechanisms—NMIIA-dependent cellular contractility upregulates the expression of some mammalian diaphanous-related formin (mDia) proteins that suppress MT dynamics; NMIIB-dependent inhibition of actin depolymerization suppresses MT growth independently of cellular contractility. The depletion of either NMIIA or NMIIB resulted in the increase in cellular morphological dynamicity, which was alleviated by the perturbation of MT dynamics. Thus, the NMII-dependent control of cell morphology significantly relies on MT dynamics.


2020 ◽  
Vol 318 (5) ◽  
pp. F1306-F1312
Author(s):  
Miran Yoo ◽  
Laura M. C. Barisoni ◽  
Kyung Lee ◽  
G. Luca Gusella

Defects in the function of primary cilia are commonly associated with the development of renal cysts. On the other hand, the intact cilium appears to contribute a cystogenic signal whose effectors remain unclear. As integrin-β1 is required for the cystogenesis caused by the deletion of the polycystin 1 gene, we asked whether it would be similarly important in the cystogenetic process caused by other ciliary defects. We addressed this question by investigating the effect of integrin-β1 deletion in a ciliopathy genetic model in which the Ift88 gene, a component of complex B of intraflagellar transport that is required for the proper assembly of cilia, is specifically ablated in principal cells of the collecting ducts. We showed that the renal cystogenesis caused by loss of Ift88 is prevented when integrin-β1 is simultaneously depleted. In parallel, pathogenetic manifestations of the disease, such as increased inflammatory infiltrate and fibrosis, were also significantly reduced. Overall, our data indicate that integrin-β1 is also required for the renal cystogenesis caused by ciliary defects and point to integrin-β1-controlled pathways as common drivers of the disease and as possible targets to interfere with the cystogenesis caused by ciliary defects.


Micromachines ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 978
Author(s):  
Yi Zhang ◽  
Yang Gan ◽  
Liwen Zhang ◽  
Deyuan Zhang ◽  
Huawei Chen

Unidirectional liquid spreading without energy input is of significant interest for the broad applications in diverse fields such as water harvesting, drop transfer, oil–water separation and microfluidic devices. However, the controllability of liquid motion and the simplification of manufacturing process remain challenges. Inspired by the peristome of Nepenthes alata, a surface-tension-confined (STC) channel with biomimetic microcavities was fabricated facilely through UV exposure photolithography and partial plasma treatment. Perfect asymmetric liquid spreading was achieved by combination of microcavities and hydrophobic boundary, and the stability of pinning effect was demonstrated. The influences of structural features of microcavities on both liquid spreading and liquid pinning were investigated and the underlying mechanism was revealed. We also demonstrated the spontaneous unidirectional transport of liquid in 3D space and on tilting slope. In addition, through changing pits arrangement and wettability pattern, complex liquid motion paths and microreactors were realized. This work will open a new way for liquid manipulation and lab-on-chip applications.


2005 ◽  
Vol 16 (2) ◽  
pp. 649-664 ◽  
Author(s):  
Pirta Hotulainen ◽  
Eija Paunola ◽  
Maria K. Vartiainen ◽  
Pekka Lappalainen

Actin-depolymerizing factor (ADF)/cofilins are small actin-binding proteins found in all eukaryotes. In vitro, ADF/cofilins promote actin dynamics by depolymerizing and severing actin filaments. However, whether ADF/cofilins contribute to actin dynamics in cells by disassembling “old” actin filaments or by promoting actin filament assembly through their severing activity is a matter of controversy. Analysis of mammalian ADF/cofilins is further complicated by the presence of multiple isoforms, which may contribute to actin dynamics by different mechanisms. We show that two isoforms, ADF and cofilin-1, are expressed in mouse NIH 3T3, B16F1, and Neuro 2A cells. Depleting cofilin-1 and/or ADF by siRNA leads to an accumulation of F-actin and to an increase in cell size. Cofilin-1 and ADF seem to play overlapping roles in cells, because the knockdown phenotype of either protein could be rescued by overexpression of the other one. Cofilin-1 and ADF knockdown cells also had defects in cell motility and cytokinesis, and these defects were most pronounced when both ADF and cofilin-1 were depleted. Fluorescence recovery after photobleaching analysis and studies with an actin monomer-sequestering drug, latrunculin-A, demonstrated that these phenotypes arose from diminished actin filament depolymerization rates. These data suggest that mammalian ADF and cofilin-1 promote cytoskeletal dynamics by depolymerizing actin filaments and that this activity is critical for several processes such as cytokinesis and cell motility.


2009 ◽  
Vol 296 (2) ◽  
pp. H263-H271 ◽  
Author(s):  
Daniel R. Raymond ◽  
Rhonda L. Carter ◽  
Christopher A. Ward ◽  
Donald H. Maurice

Numerous cAMP-elevating agents regulate events required for efficient migration of arterial vascular smooth muscle cells (VSMCs). Interestingly, when the impact of cAMP-elevating agents on individual migration-related events is studied, these agents have been shown to have distinct, and sometimes unexpected, effects. For example, although cAMP-elevating agents inhibit overall migration, they promote VSMC adhesion to extracellular matrix proteins and the formation of membrane extensions, which are both events that are essential for and promote migration. Herein, we extend previous observations that identified phosphodiesterase-4D3 (PDE4D3) as an integral component of a PKA/A kinase-anchoring protein (AKAP) complex in cultured/hypertrophied rat cardiac myocytes to the case for nonhypertrophied cardiac myocytes. Moreover, we show that while rat aortic VSMCs also express PDE4D3, this protein is not detected in PKA/AKAP complexes isolated from these cells. In contrast, we show that another PDE4D splice variant expressed in arterial vascular myocytes, namely, PDE4D8, integrates into PKA/AKAP-based signaling complexes in VSMCs. Consistent with the idea that a PDE4D8/PKA/AKAP complex regulates specific VSMC functions, PKA and PDE4D8 were each recruited to leading-edge structures in migrating VSMCs, and inhibition of PDE4D8 recruitment to pseudopodia of migrating cells caused localized changes in actin dynamics. Our data are presented in the context that cardiac myocytes and arterial VSMCs may use distinct PDE4D variants to regulate selected pools of targeted PKA activity and that disruption of this complex may allow selective regulation of cAMP-dependent events between these two cardiovascular cell types.


2018 ◽  
Author(s):  
J. Flaherty ◽  
Z. Feng ◽  
Z. Peng ◽  
Y.-N. Young ◽  
A. Resnick

ABSTRACTThe stochastic tip dynamics of a primary cilium held within an optical trap is quantified by combining experimental, analytical and computational tools. Primary cilia are cellular organelles, present on most vertebrate cells, hypothesized to function as a fluid flow sensor. The mechanical properties of a cilium remain incompletely characterized. We measured the fluctuating position of an optically trapped cilium tip under untreated, Taxol-treated, and HIF-stabilized conditions. We applied analytical modeling to derive the mean-squared displacement of the trapped tip of a cilium and compared the results with experimental measurements. We provide, for the first time, evidence that the effective flexural rigidity of a ciliary axoneme is length-dependent, and longer cilia are stiffer than shorter cilia. We then provide a rational explanation for both effects. We demonstrate that the apparent length-dependent flexural rigidity can be understood by a combination of modeling axonemal microtubules orthotropic elastic shells and including (actin-driven) active stochastic basal body motion. It is hoped that our improved characterization of cilia will result in deeper understanding of the biological function of cellular flow sensing by this organelle. Our model could be profitably applied to motile cilia and our results also demonstrate the possibility of using easily observable ciliary dynamics to probe interior cytoskeletal dynamics.


Sign in / Sign up

Export Citation Format

Share Document