scholarly journals Unique structure and positive selection promote the rapid divergence of Drosophila Y chromosomes

eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Ching-Ho Chang ◽  
Lauren E Gregory ◽  
Kathleen E Gordon ◽  
Colin D Meiklejohn ◽  
Amanda M Larracuente

Y chromosomes across diverse species convergently evolve a gene-poor, heterochromatic organization enriched for duplicated genes, LTR retrotransposons, and satellite DNA. Sexual antagonism and a loss of recombination play major roles in the degeneration of young Y chromosomes. However, the processes shaping the evolution of mature, already degenerated Y chromosomes are less well-understood. Because Y chromosomes evolve rapidly, comparisons between closely related species are particularly useful. We generated de novo long read assemblies complemented with cytological validation to reveal Y chromosome organization in three closely related species of the Drosophila simulans complex, which diverged only 250,000 years ago and share >98% sequence identity. We find these Y chromosomes are divergent in their organization and repetitive DNA composition and discover new Y-linked gene families whose evolution is driven by both positive selection and gene conversion. These Y chromosomes are also enriched for large deletions, suggesting that the repair of double-strand breaks on Y chromosomes may be biased toward microhomology-mediated end joining over canonical non-homologous end-joining. We propose that this repair mechanism contributes to the convergent evolution of Y chromosome organization across organisms.

2021 ◽  
Author(s):  
Ching-Ho Chang ◽  
Lauren E. Gregory ◽  
Kathleen E. Gordon ◽  
Colin D. Meiklejohn ◽  
Amanda M. Larracuente

AbstractY chromosomes across diverse species convergently evolve a gene-poor, heterochromatic organization enriched for duplicated genes, LTR retrotransposable elements, and satellite DNA. Sexual antagonism and a loss of recombination play major roles in the degeneration of young Y chromosomes. However, the processes shaping the evolution of mature, already degenerated Y chromosomes are less well-understood. Because Y chromosomes evolve rapidly, comparisons between closely related species are particularly useful. We generated de novo long read assemblies complemented with cytological validation to reveal Y chromosome organization in three closely related species of the Drosophila simulans complex, which diverged only 250,000 years ago and share >98% sequence identity. We find these Y chromosomes are divergent in their organization and repetitive DNA composition and discover new Y-linked gene families whose evolution is driven by both positive selection and gene conversion. These Y chromosomes are also enriched for large deletions, suggesting that the repair of double-strand breaks on Y chromosomes may be biased toward microhomology-mediated end joining over canonical non-homologous end-joining. We propose that this repair mechanism generally contributes to the convergent evolution of Y chromosome organization.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Pingping Liang ◽  
Hafiz Sohaib Ahmed Saqib ◽  
Xiaomin Ni ◽  
Yingjia Shen

Abstract Background Marine medaka (Oryzias melastigma) is considered as an important ecotoxicological indicator to study the biochemical, physiological and molecular responses of marine organisms towards increasing amount of pollutants in marine and estuarine waters. Results In this study, we reported a high-quality and accurate de novo genome assembly of marine medaka through the integration of single-molecule sequencing, Illumina paired-end sequencing, and 10X Genomics linked-reads. The 844.17 Mb assembly is estimated to cover more than 98% of the genome and is more continuous with fewer gaps and errors than the previous genome assembly. Comparison of O. melastigma with closely related species showed significant expansion of gene families associated with DNA repair and ATP-binding cassette (ABC) transporter pathways. We identified 274 genes that appear to be under significant positive selection and are involved in DNA repair, cellular transportation processes, conservation and stability of the genome. The positive selection of genes and the considerable expansion in gene numbers, especially related to stimulus responses provide strong supports for adaptations of O. melastigma under varying environmental stresses. Conclusions The highly contiguous marine medaka genome and comparative genomic analyses will increase our understanding of the underlying mechanisms related to its extraordinary adaptation capability, leading towards acceleration in the ongoing and future investigations in marine ecotoxicology.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0251655
Author(s):  
Maurizio Mascarello ◽  
Mario Amalfi ◽  
Pieter Asselman ◽  
Erik Smets ◽  
Olivier J. Hardy ◽  
...  

Tropical forests represent vast carbon stocks and continue to be key carbon sinks and buffer climate changes. The international policy constructed several mechanisms aiming at conservation and sustainable use of these forests. Illegal logging is an important threat of forests, especially in the tropics. Several laws and regulations have been set up to combat illegal timber trade. Despite significant enforcement efforts of these regulations, illegal logging continues to be a serious problem and impacts for the functioning of the forest ecosystem and global biodiversity in the tropics. Microscopic analysis of wood samples and the use of conventional plant DNA barcodes often do not allow to distinguish closely-related species. The use of novel molecular technologies could make an important contribution for the identification of tree species. In this study, we used high-throughput sequencing technologies and bioinformatics tools to obtain the complete de-novo chloroplast genome of 62 commercial African timber species using the genome skimming method. Then, we performed a comparative genomic analysis that revealed new candidate genetic regions for the discrimination of closely-related species. We concluded that genome skimming is a promising method for the development of plant genetic markers to combat illegal logging activities supporting CITES, FLEGT and the EU Timber Regulation.


Genes ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 409 ◽  
Author(s):  
Halie M. Rando ◽  
William H. Wadlington ◽  
Jennifer L. Johnson ◽  
Jeremy T. Stutchman ◽  
Lyudmila N. Trut ◽  
...  

While the number of mammalian genome assemblies has proliferated, Y-chromosome assemblies have lagged behind. This discrepancy is caused by biological features of the Y-chromosome, such as its high repeat content, that present challenges to assembly with short-read, next-generation sequencing technologies. Partial Y-chromosome assemblies have been developed for the cat (Felis catus), dog (Canis lupus familiaris), and grey wolf (Canis lupus lupus), providing the opportunity to examine the red fox (Vulpes vulpes) Y-chromosome in the context of closely related species. Here we present a data-driven approach to identifying Y-chromosome sequence among the scaffolds that comprise the short-read assembled red fox genome. First, scaffolds containing genes found on the Y-chromosomes of cats, dogs, and wolves were identified. Next, analysis of the resequenced genomes of 15 male and 15 female foxes revealed scaffolds containing male-specific k-mers and patterns of inter-sex copy number variation consistent with the heterogametic chromosome. Analyzing variation across these two metrics revealed 171 scaffolds containing 3.37 Mbp of putative Y-chromosome sequence. The gene content of these scaffolds is consistent overall with that of the Y-chromosome in other carnivore species, though the red fox Y-chromosome carries more copies of BCORY2 and UBE1Y than has been reported in related species and fewer copies of SRY than in other canids. The assignment of these scaffolds to the Y-chromosome serves to further characterize the content of the red fox draft genome while providing resources for future analyses of canid Y-chromosome evolution.


2022 ◽  
Author(s):  
Leeban Yusuf ◽  
Venera Tyukmaeva ◽  
Anneli Hoikkala ◽  
Michael G Ritchie

Speciation with gene flow is now widely regarded as common. However, the frequency of introgression between recently diverged species and the evolutionary consequences of gene flow are still poorly understood. The virilis group of Drosophila contains around a dozen species that are geographically widespread and show varying levels of pre-zygotic and post-zygotic isolation. Here, we utilize de novo genome assemblies and whole-genome sequencing data to resolve phylogenetic relationships and describe patterns of introgression and divergence across the group. We suggest that the virilis group consists of three, rather than the traditional two, subgroups. We found evidence of pervasive phylogenetic discordance caused by ancient introgression events between distant lineages within the group, and much more recent gene flow between closely-related species. When assessing patterns of genome-wide divergence in species pairs across the group, we found no consistent genomic evidence of a disproportionate role for the X chromosome. Some genes undergoing rapid sequence divergence across the group were involved in chemical communication and may be related to the evolution of sexual isolation. We suggest that gene flow between closely-related species has potentially had an impact on lineage-specific adaptation and the evolution of reproductive barriers. Our results show how ancient and recent introgression confuse phylogenetic reconstruction, and suggest that shared variation can facilitate adaptation and speciation.


1966 ◽  
Vol 14 (5) ◽  
pp. 821 ◽  
Author(s):  
MJD White ◽  
J Cheney

Two closely related species belonging to the cultrata group show an XY condition in the male as a result of an X-autosome fusion. One of these has two cytological races which differ in the shape of the Y chromosome. This complex of XY forms has given rise to an XlX2Y species by a further Y-autosome fusion. The latter species has two cytological races which differ in the shape of the Y and X2 chromosomes, presumably as a result of the fixation of pericentric inversions and other structural changes.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Kevin H.-C. Wei ◽  
Lauren Gibilisco ◽  
Doris Bachtrog

Abstract Large portions of eukaryotic genomes consist of transposable elements (TEs), and the establishment of transcription-repressing heterochromatin during early development safeguards genome integrity in Drosophila. Repeat-rich Y chromosomes can act as reservoirs for TEs (‘toxic’ Y effect), and incomplete epigenomic defenses during early development can lead to deleterious TE mobilization. Here, we contrast the dynamics of early TE activation in two Drosophila species with vastly different Y chromosomes of different ages. Zygotic TE expression is elevated in male embryos relative to females in both species, mostly due to expression of Y-linked TEs. Interestingly, male-biased TE expression diminishes across development in D. pseudoobscura, but remains elevated in D. miranda, the species with the younger and larger Y chromosome. The repeat-rich Y of D. miranda still contains many actively transcribed genes, which compromise the formation of silencing heterochromatin. Elevated TE expression results in more de novo insertions of repeats in males compared to females. This lends support to the idea that the ‘toxic’ Y chromosome can create a mutational burden in males when genome-wide defense mechanisms are compromised, and suggests a previously unappreciated epigenetic conflict on evolving Y chromosomes between transcription of essential genes and silencing of selfish DNA.


2021 ◽  
Vol 11 (4) ◽  
Author(s):  
Cécile Lorrain ◽  
Alice Feurtey ◽  
Mareike Möller ◽  
Janine Haueisen ◽  
Eva Stukenbrock

Abstract Transposable elements (TEs) impact genome plasticity, architecture, and evolution in fungal plant pathogens. The wide range of TE content observed in fungal genomes reflects diverse efficacy of host-genome defense mechanisms that can counter-balance TE expansion and spread. Closely related species can harbor drastically different TE repertoires. The evolution of fungal effectors, which are crucial determinants of pathogenicity, has been linked to the activity of TEs in pathogen genomes. Here, we describe how TEs have shaped genome evolution of the fungal wheat pathogen Zymoseptoria tritici and four closely related species. We compared de novo TE annotations and repeat-induced point mutation signatures in 26 genomes from the Zymoseptoria species-complex. Then, we assessed the relative insertion ages of TEs using a comparative genomics approach. Finally, we explored the impact of TE insertions on genome architecture and plasticity. The 26 genomes of Zymoseptoria species reflect different TE dynamics with a majority of recent insertions. TEs associate with accessory genome compartments, with chromosomal rearrangements, with gene presence/absence variation, and with effectors in all Zymoseptoria species. We find that the extent of RIP-like signatures varies among Z. tritici genomes compared to genomes of the sister species. The detection of a reduction of RIP-like signatures and TE recent insertions in Z. tritici reflects ongoing but still moderate TE mobility.


1967 ◽  
Vol 45 (4) ◽  
pp. 377-396 ◽  
Author(s):  
Robert W. Dunbar

The salivary gland chromosomes of nearctic black flies which form a natural group in Eusimulium close to E. congareenarum were analyzed in detail. Comparisons of their giant chromosome banding patterns disclosed six cytological segregates in two subgroups; subgroup A, with E. innocens, E. anatinum, E. congareenarum, and a cytologically distinct form near the latter designated E. congareenarum 'b'; subgroup B, with E. excisum and E. rivuli. Within each subgroup closely related species differ at least by (1) two or three interspecific inversions, (2) the intraspecific specific inversions present, and (3) the details of the X and Y chromosomes. The differences between the subgroups include (1) the position of the nucleolus, (2) the identity of the sex chromosomes as either the first or third pair, and (3) about 15 interspecific inversions between E. congareenarum and E. excisum, the most closely related species from either subgroup. The phylogenetic interrelationships have been traced by means of the interspecific inversions.


Sign in / Sign up

Export Citation Format

Share Document