scholarly journals Genome skimming reveals novel plastid markers for the molecular identification of illegally logged African timber species

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0251655
Author(s):  
Maurizio Mascarello ◽  
Mario Amalfi ◽  
Pieter Asselman ◽  
Erik Smets ◽  
Olivier J. Hardy ◽  
...  

Tropical forests represent vast carbon stocks and continue to be key carbon sinks and buffer climate changes. The international policy constructed several mechanisms aiming at conservation and sustainable use of these forests. Illegal logging is an important threat of forests, especially in the tropics. Several laws and regulations have been set up to combat illegal timber trade. Despite significant enforcement efforts of these regulations, illegal logging continues to be a serious problem and impacts for the functioning of the forest ecosystem and global biodiversity in the tropics. Microscopic analysis of wood samples and the use of conventional plant DNA barcodes often do not allow to distinguish closely-related species. The use of novel molecular technologies could make an important contribution for the identification of tree species. In this study, we used high-throughput sequencing technologies and bioinformatics tools to obtain the complete de-novo chloroplast genome of 62 commercial African timber species using the genome skimming method. Then, we performed a comparative genomic analysis that revealed new candidate genetic regions for the discrimination of closely-related species. We concluded that genome skimming is a promising method for the development of plant genetic markers to combat illegal logging activities supporting CITES, FLEGT and the EU Timber Regulation.

2021 ◽  
Author(s):  
Ching-Ho Chang ◽  
Lauren E. Gregory ◽  
Kathleen E. Gordon ◽  
Colin D. Meiklejohn ◽  
Amanda M. Larracuente

AbstractY chromosomes across diverse species convergently evolve a gene-poor, heterochromatic organization enriched for duplicated genes, LTR retrotransposable elements, and satellite DNA. Sexual antagonism and a loss of recombination play major roles in the degeneration of young Y chromosomes. However, the processes shaping the evolution of mature, already degenerated Y chromosomes are less well-understood. Because Y chromosomes evolve rapidly, comparisons between closely related species are particularly useful. We generated de novo long read assemblies complemented with cytological validation to reveal Y chromosome organization in three closely related species of the Drosophila simulans complex, which diverged only 250,000 years ago and share >98% sequence identity. We find these Y chromosomes are divergent in their organization and repetitive DNA composition and discover new Y-linked gene families whose evolution is driven by both positive selection and gene conversion. These Y chromosomes are also enriched for large deletions, suggesting that the repair of double-strand breaks on Y chromosomes may be biased toward microhomology-mediated end joining over canonical non-homologous end-joining. We propose that this repair mechanism generally contributes to the convergent evolution of Y chromosome organization.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10343
Author(s):  
Pattsarun Cheawchanlertfa ◽  
Sawannee Sutheeworapong ◽  
Piroon Jenjaroenpun ◽  
Thidathip Wongsurawat ◽  
Intawat Nookaew ◽  
...  

Background Cassava pulp is a promising starch-based biomasses, which consists of residual starch granules entrapped in plant cell wall containing non-starch polysaccharides, cellulose and hemicellulose. Strain CT4T, a novel mesophilic anaerobic bacterium isolated from soil collected from a cassava pulp landfill, has a strong ability to degrade polysaccharides in cassava pulp. This study explored a rarely described species within the genus Clostridium that possessed a group of cassava pulp-degrading enzymes. Methods A novel mesophilic anaerobic bacterium, the strain CT4T, was identified based on phylogenetic, genomic, phenotypic and chemotaxonomic analysis. The complete genome of the strain CT4T was obtained following whole-genome sequencing, assembly and annotation using both Illumina and Oxford Nanopore Technology (ONT) platforms. Results Analysis based on the 16S rRNA gene sequence indicated that strain CT4T is a species of genus Clostridium. Analysis of the whole-genome average amino acid identity (AAI) of strain CT4T and the other 665 closely related species of the genus Clostridium revealed a separated strain CT4T from the others. The results revealed that the genome consisted of a 6.3 Mb circular chromosome with 5,664 protein-coding sequences. Genome analysis result of strain CT4T revealed that it contained a set of genes encoding amylolytic-, hemicellulolytic-, cellulolytic- and pectinolytic enzymes. A comparative genomic analysis of strain CT4T with closely related species with available genomic information, C. amylolyticum SW408T, showed that strain CT4T contained more genes encoding cassava pulp-degrading enzymes, which comprised a complex mixture of amylolytic-, hemicellulolytic-, cellulolytic- and pectinolytic enzymes. This work presents the potential for saccharification of strain CT4T in the utilization of cassava pulp. Based on phylogenetic, genomic, phenotypic and chemotaxonomic data, we propose a novel species for which the name Clostridium manihotivorum sp. nov. is suggested, with the type strain CT4T (= TBRC 11758T = NBRC 114534T).


2016 ◽  
Vol 1 (1) ◽  
Author(s):  
James D Weisfeld-Adams ◽  
Amanda K Tkachuk ◽  
Kenneth N Maclean ◽  
Naomi L Meeks ◽  
Stuart A Scott

Abstract Down syndrome (DS) is the most common genetic cause of intellectual disability (ID) and in the majority of cases is the result of complete trisomy 21. The hypothesis that the characteristic DS clinical features are due to a single DS critical region (DSCR) at distal chromosome 21q has been refuted by recently reported segmental trisomy 21 cases characterised by microarray-based comparative genomic hybridisation (aCGH). These rare cases have implicated multiple regions on chromosome 21 in the aetiology of distinct features of DS; however, the map of chromosome 21 copy-number aberrations and their associated phenotypes remains incompletely defined. We report a child with ID who was deemed very high risk for DS on antenatal screening (1 in 13) and has partial, but distinct, dysmorphologic features of DS without congenital heart disease (CHD). Oligonucleotide aCGH testing of the proband detected a previously unreported de novo 2.78-Mb duplication on chromosome 21q22.11 that includes 16 genes; however, this aberration does not harbour any of the historical DSCR genes (APP, DSCR1, DYRK1A and DSCAM). This informative case implicates previously under-recognised candidate genes (SOD1, SYNJ1 and ITSN1) in the pathogenesis of specific DS clinical features and supports a critical region for CHD located more distal on chromosome 21q. In addition, this unique case illustrates how the increasing resolution of microarray and high-throughput sequencing technologies can continue to reveal new biology and enhance understanding of widely studied genetic diseases that were originally described over 50 years ago.


2022 ◽  
Author(s):  
Leeban Yusuf ◽  
Venera Tyukmaeva ◽  
Anneli Hoikkala ◽  
Michael G Ritchie

Speciation with gene flow is now widely regarded as common. However, the frequency of introgression between recently diverged species and the evolutionary consequences of gene flow are still poorly understood. The virilis group of Drosophila contains around a dozen species that are geographically widespread and show varying levels of pre-zygotic and post-zygotic isolation. Here, we utilize de novo genome assemblies and whole-genome sequencing data to resolve phylogenetic relationships and describe patterns of introgression and divergence across the group. We suggest that the virilis group consists of three, rather than the traditional two, subgroups. We found evidence of pervasive phylogenetic discordance caused by ancient introgression events between distant lineages within the group, and much more recent gene flow between closely-related species. When assessing patterns of genome-wide divergence in species pairs across the group, we found no consistent genomic evidence of a disproportionate role for the X chromosome. Some genes undergoing rapid sequence divergence across the group were involved in chemical communication and may be related to the evolution of sexual isolation. We suggest that gene flow between closely-related species has potentially had an impact on lineage-specific adaptation and the evolution of reproductive barriers. Our results show how ancient and recent introgression confuse phylogenetic reconstruction, and suggest that shared variation can facilitate adaptation and speciation.


eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Ching-Ho Chang ◽  
Lauren E Gregory ◽  
Kathleen E Gordon ◽  
Colin D Meiklejohn ◽  
Amanda M Larracuente

Y chromosomes across diverse species convergently evolve a gene-poor, heterochromatic organization enriched for duplicated genes, LTR retrotransposons, and satellite DNA. Sexual antagonism and a loss of recombination play major roles in the degeneration of young Y chromosomes. However, the processes shaping the evolution of mature, already degenerated Y chromosomes are less well-understood. Because Y chromosomes evolve rapidly, comparisons between closely related species are particularly useful. We generated de novo long read assemblies complemented with cytological validation to reveal Y chromosome organization in three closely related species of the Drosophila simulans complex, which diverged only 250,000 years ago and share >98% sequence identity. We find these Y chromosomes are divergent in their organization and repetitive DNA composition and discover new Y-linked gene families whose evolution is driven by both positive selection and gene conversion. These Y chromosomes are also enriched for large deletions, suggesting that the repair of double-strand breaks on Y chromosomes may be biased toward microhomology-mediated end joining over canonical non-homologous end-joining. We propose that this repair mechanism contributes to the convergent evolution of Y chromosome organization across organisms.


Genes ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 521 ◽  
Author(s):  
Dylan Richards ◽  
Ludivine Renaud ◽  
Nisha Agarwal ◽  
E. Starr Hazard ◽  
John Hyde ◽  
...  

The monitoring of marine species as sentinels for ecosystem health has long been a valuable tool worldwide, providing insight into how both anthropogenic pollution and naturally occurring phenomena (i.e., harmful algal blooms) may lead to human and animal dietary concerns. The marine environments contain many contaminants of anthropogenic origin that have sufficient similarities to steroid and thyroid hormones, to potentially disrupt normal endocrine physiology in humans, fish, and other animals. An appropriate understanding of the effects of these endocrine disrupting chemicals (EDCs) on forage fish (e.g., sardine, anchovy, mackerel) can lead to significant insight into how these contaminants may affect local ecosystems in addition to their potential impacts on human health. With advancements in molecular tools (e.g., high-throughput sequencing, HTS), a genomics approach offers a robust toolkit to discover putative genetic biomarkers in fish exposed to these chemicals. However, the lack of available sequence information for non-model species has limited the development of these genomic toolkits. Using HTS and de novo assembly technology, the present study aimed to establish, for the first time for Sardinops sagax (Pacific sardine), Scomber japonicas (Pacific chub mackerel) and Pleuronichthys verticalis (hornyhead turbot), a de novo global transcriptome database of the liver, the primary organ involved in detoxification. The assembled transcriptomes provide a foundation for further downstream validation, comparative genomic analysis and biomarker development for future applications in ecotoxicogenomic studies, as well as environmental evaluation (e.g., climate change) and public health safety (e.g., dietary screening).


2019 ◽  
Vol 41 (11) ◽  
pp. 1253-1264 ◽  
Author(s):  
Juyuan Xing ◽  
Xiaobo Li ◽  
Yingjiao Sun ◽  
Juanjuan Zhao ◽  
Shaohua Miao ◽  
...  

2021 ◽  
Vol 11 (4) ◽  
Author(s):  
Cécile Lorrain ◽  
Alice Feurtey ◽  
Mareike Möller ◽  
Janine Haueisen ◽  
Eva Stukenbrock

Abstract Transposable elements (TEs) impact genome plasticity, architecture, and evolution in fungal plant pathogens. The wide range of TE content observed in fungal genomes reflects diverse efficacy of host-genome defense mechanisms that can counter-balance TE expansion and spread. Closely related species can harbor drastically different TE repertoires. The evolution of fungal effectors, which are crucial determinants of pathogenicity, has been linked to the activity of TEs in pathogen genomes. Here, we describe how TEs have shaped genome evolution of the fungal wheat pathogen Zymoseptoria tritici and four closely related species. We compared de novo TE annotations and repeat-induced point mutation signatures in 26 genomes from the Zymoseptoria species-complex. Then, we assessed the relative insertion ages of TEs using a comparative genomics approach. Finally, we explored the impact of TE insertions on genome architecture and plasticity. The 26 genomes of Zymoseptoria species reflect different TE dynamics with a majority of recent insertions. TEs associate with accessory genome compartments, with chromosomal rearrangements, with gene presence/absence variation, and with effectors in all Zymoseptoria species. We find that the extent of RIP-like signatures varies among Z. tritici genomes compared to genomes of the sister species. The detection of a reduction of RIP-like signatures and TE recent insertions in Z. tritici reflects ongoing but still moderate TE mobility.


Sign in / Sign up

Export Citation Format

Share Document