Effects of evaporation vapor composition and post-annealing conditions on carrier density of undoped BaSi2 evaporated films

2020 ◽  
Vol 59 (SF) ◽  
pp. SFFA05 ◽  
Author(s):  
Yuki Kimura ◽  
Michinobu Fujiwara ◽  
Yoshihiko Nakagawa ◽  
Kazuhiro Gotoh ◽  
Yasuyoshi Kurokawa ◽  
...  
Author(s):  
Wei Zhang ◽  
Tom Wyatt ◽  
Donggang Yao ◽  
Qingwei Zhang ◽  
Jack G. Zhou

Porous poly(lactic acid) PLA materials are highly demanded as scaffolding templates in tissue engineering applications. In this study, a protocol for creating co-continuous porous PLA structures with nanodiamond (ND) as additive was investigated. First, a ternary blend of PLA/PS/ND was prepared with different mixing ratios under different mixing conditions. Next, a post annealing stage was applied to coarsen the phase structure. Finally, the PS phase was sacrificially extracted, leaving a porous matrix. The experimental results showed that ND can be an effective compatiblizer for increasing the miscibility between PS and PLA and reducing the phase size. It was further found that the post annealing conditions significantly affect the distribution of ND particles in the blend and finally in the porous PLA structure.


2007 ◽  
Vol 280-283 ◽  
pp. 873-876
Author(s):  
Sheng Guo Lu ◽  
Haydn Chen

LaNiO3 (LNO) has been used as bottom electrode layer for ferroelectric and antiferroelectric thin films due to its good conduction, preferred (100) orientation, same crystalline structure as many perovskite ferroelectrics and antiferroelectrics, good adhesion and compatibility with the Pt/Ti/SiO2/Si template. In this study we have investigated the ideal optimal post - annealing conditions for LaNiO3 thin films deposited at 450°C using a magnetron sputtering method. Heat treatment from 500 to 1200°C was performed. Scanning electron microscopy (SEM), x-ray diffraction (XRD) and electrical measurements were carried out to characterize the morphology, structure, and macroscopic properties. Results indicated that the LNO film had the best quality when annealed at about 800°C. Above this temperature, the morphology, structure and associated properties would deteriorate.


1989 ◽  
Vol 169 ◽  
Author(s):  
S.H. Liou

AbstractThe annealing steps have been shown to be a crucial determinant of the quality of Tl‐based superconducting films. In this study, we discuss the formation of the superconducting Tl2Ba2CaCu2O8 and Tl2Ba2Ca2Cu3O10 phases with varied post‐annealing temperature and fixed annealing time. A x‐ray, electron micro‐probe, and scanning electron microscopy were carried out to evaluate the structure of superconducting phases formed for each annealing condition. For films deposited on SrTiO3 substrates and heat‐treated at 870°C for 15 min, the lower Tc phase Tl2Ba2CaCu2O8 becomes a major phase. The films consist of nearly pure Tl2Ba2Ca2Cu3O10 phase with Tc (R=0) in the range of 100K to 118K and c‐axis perpendicular to the film plane were obtained after annealing 880‐890°C for 15 min. These films were epitaxy growth on SrTi03 substrates.


2009 ◽  
Vol 54 (3) ◽  
pp. 1278-1282 ◽  
Author(s):  
Eun-Jung Jang ◽  
Young-Bae Park ◽  
Sarah Pfeiffer ◽  
Bioh Kim ◽  
Thorsten Matthias ◽  
...  

1993 ◽  
Vol 8 (9) ◽  
pp. 2162-2169 ◽  
Author(s):  
P.J. Kung ◽  
X.D. Wu ◽  
R.E. Muenchausen ◽  
K.V. Salazar ◽  
S.R. Foltyn ◽  
...  

Superconducting Bi–Sr–Ca–Cu–O thin films were obtained from post-annealing partially crystallized and amorphous films grown on MgO(100) by pulsed laser deposition. The substrate temperature investigated was in the range of 350–750 °C, over a range of pressure 0.1 to 100 mTorr. The as-deposited films were annealed in 7.5 vol.% O2/Ar or in air at 800–865 °C from several minutes to a few hours. Unlike the pure Bi2Sr2CaCu2O8+δ (2212) phase (Tc = 80 K) which is easily formed after a long continuous period of post-annealing at a temperature below 830 °C, the formation of (Bi, Pb)2Sr2Ca2Cu3O10+δ (2223) phase from the as-deposited amorphous films requires repetitive annealing cycles of short duration in air at 850 °C to simultaneously achieve good crystal quality, small surface roughness, and sharp diamagnetic transition (Tc = 110 K). After annealing, the temperature is lowered down to ∼650 °C by quenching in air and then a slow-cooling step is employed. This procedure was found to enhance the volume fraction of the 2223 phase as compared with a direct slow-cooling process. The trade-off between annealing temperature and time was observed to affect the phase formation and the smoothness of the annealed films. To optimize the post-annealing conditions, Rutherford backscattering spectrometry, x-ray diffraction, and scanning electron microscopy were systematically used to examine the composition, structure, and morphology of the films, respectively.


2008 ◽  
Vol 1109 ◽  
Author(s):  
Yasushi Sato ◽  
Yuta Sanno ◽  
Nobuto Oka ◽  
Toshihisa Kamiyama ◽  
Yuzo Shigesato

AbstractNb-doped anatase TiO2 films were deposited on unheated glass by dc magnetron sputtering using a slightly reduced TiO2-x–Nb2O5-x target with oxygen flow ratios [O2/(Ar+O2)] in the range from 0.00 to 0.20%. After post-annealing in a vacuum (6 × 10−4 Pa) at 500 and 600 °C for 1 h, the films were crystallized into the polycrystalline anatase TiO2 structure. The resistivity of the both films decreased to 6.3-6.8 × 10−4 Ω·cm with increasing [O2/(Ar+O2)] to 0.10%, where the carrier density and Hall mobility were 1.9-2.0 × 1021 cm−3 and 4.9-5.0 cm2·V−1·s−1, respectively. The films exhibited high transparency of over 60-70% in the visible region of light.


Sign in / Sign up

Export Citation Format

Share Document