Improvement of Crystallographic Quality of Electroplated Copper Thin-Film Interconnections for Through-Silicon Vias

2013 ◽  
Vol 52 (4S) ◽  
pp. 04CB01 ◽  
Author(s):  
Ken Suzuki ◽  
Naokazu Murata ◽  
Naoki Saito ◽  
Ryosuke Furuya ◽  
Osamu Asai ◽  
...  
Author(s):  
Pornvitoo Rittinon ◽  
Ken Suzuki ◽  
Hideo Miura

Copper thin films are indispensable for the interconnections in the advanced electronic products, such as TSV (Trough Silicon Via), fine bumps, and thin-film interconnections in various devices and interposers. However, it has been reported that both electrical and mechanical properties of the films vary drastically comparing with those of conventional bulk copper. The main reason for the variation can be attributed to the fluctuation of the crystallinity of grain boundaries in the films. Porous or sparse grain boundaries show very high resistivity and brittle fracture characteristic in the films. Thus, the thermal conductivity of the electroplated copper thin films should be varied drastically depending on their micro texture based on the Wiedemann-Franz’s law. Since the copper interconnections are used not only for the electrical conduction but also for the thermal conduction, it is very important to quantitatively evaluate the crystallinity of the polycrystalline thin-film materials and clarify the relationship between the crystallinity and thermal properties of the films. The crystallinity of the interconnections were quantitatively evaluated using an electron back-scatter diffraction method. It was found that the porous grain boundaries which contain a significant amount of vacancies increase the local electrical resistance in the interconnections, and thus, cause the local high Joule heating. Such porous grain boundaries can be eliminated by control the crystallinity of the seed layer material on which the electroplated copper thin film is electroplated.


2012 ◽  
Vol 2012 (1) ◽  
pp. 000548-000553 ◽  
Author(s):  
Fuliang Le ◽  
S. W. Ricky Lee ◽  
Jingshen Wu ◽  
Matthew M. F. Yuen

In this paper, a 3D stacked-die package is developed for the miniaturization and integration of electronic devices. The developed package has a stacked flip-chip-on-chip structure and eight flip chips are arranged in four vertical layers using four silicon chip carriers with through silicon vias (TSVs). In each layer, two flip chips are mounted on the silicon chip carrier with 100 um solder bumps, and multiple TSVs are fabricated in each silicon chip carrier for underfill dispensing purpose. The 3D module with four stacked layers is sequentially assembled by the standard surface mount reflow process and finally mounted to a substrate. In the underfill process, conventional I-pass underfill is used to fill up the gaps of the bottom two layers as it has relatively fast spreading speed. For the top two chip carriers, underfill is dispensed through TSVs to fill the gaps. Unlike the conventional underfill process, the encapsulant in this case would not flow in the gaps by the capillary effect unless the dispensed materials can obtain enough kinetic energy to overcome the surface tension at the end of TSVs, and thus, smooth sidewall, proper dispensing settings and optimized TSV pattern are needed. After underfill, detailed inspections are performed to verify the quality of encapsulation. The results show that the combined I-pass/TSV underfill process gives void-free encapsulation and perfect fillets for the stacked 3D package.


Author(s):  
Xi Liu ◽  
Qiao Chen ◽  
Venkatesh Sundaram ◽  
Sriram Muthukumar ◽  
Rao R. Tummala ◽  
...  

Through-silicon vias (TSVs), being one of the key enabling technologies for 3D system integration, are being used in various 3D vertically stacked devices. As TSVs are relatively new, there is not enough information in available literature on the thermo-mechanical reliability of TSVs. Due to the high coefficient of thermal expansion (CTE) mismatch between Si and the Cu vias, “Cu pumping” will occur at high temperature and “Cu sinking” will occur at low temperature, which may induce large stress in SiO2, interfacial stress at Cu/SiO2 interface and plastic deformation in Cu core. The thermal-mechanical stress can potentially cause interfacial debonding, cohesive cracking in dielectric layers or Cu core, causing some reliability issues. Thus, in this paper, three-dimensional thermo-mechanical finite-element models have been built to analyze the stress/strain distribution in the TSV structures. A comparative analysis of different via designs, such as circular, square, and annular vias has been performed. In addition, defects due to fabrication such as voids in the Cu core during electroplating and Cu pad undercutting due to over-etching are considered in the models, and it is seen that these fabrication defects are detrimental to TSV reliability.


Author(s):  
Naokazu Murata ◽  
Naoki Saito ◽  
Kinji Tamakawa ◽  
Ken Suzuki ◽  
Hideo Miura

Both mechanical and electronic properties of electroplated copper films used for interconnections were investigated experimentally considering the change of their micro texture caused by heat treatment. The fracture strain of the film annealed at 400°C increased from about 3% to 15% and their yield stress decreased from about 270 MPa to 90 MPa. In addition, it was found that two different fatigue fracture modes appeared in the film. One was a typical ductile fracture mode and the other was brittle one. When the brittle fracture occurred, a crack propagated along weak or porous grain boundaries which were formed during electroplating. The brittle fracture mode disappeared after the annealing at 300°C. These results clearly indicated that the mechanical properties of electroplated copper thin films vary drastically depending on their micro texture. The electrical reliability of the electroplated copper yjin film interconnections was also investigated. The interconnections used for electromigration tests were made using by a damascene process. An abrupt fracture mode due to local fusion appeared in the as-electroplated interconnections. Since the fracture rate increased almost linearly with the square of the applied current density, this fracture mode was dominated by local Joule heating. It seemed that the local current concentration occurred around the porous grain boundaries. The life of the interconnections was improved drastically after the annealing at 400°C. This was because of the increase of the average grain size and the improvement of the quality of grain boundaries in the annealed interconnections. However, the stress-induced migration occurred in the interconnections annealed at 400°C. This was because of the high tensile residual stress caused by the constraint of the densification of the films during annealing by the surrounding oxide film. Therefore, it is very important to control the crystallographic quality of electroplated copper films for improving the reliability of thin film interconnections. The quality of the grain boundaries can be evaluated by applying an EBSD (Electron Back Scatter Diffraction) analysis. New two experimentally determined parameters are proposed for evaluating the quality of grain boundaries quantitatively. It was confirmed that the crystallographic quality of grain boundaries can be evaluated quantitatively by using the two parameters, and it is possible to estimate both the strength and reliability of the interconnections.


2018 ◽  
Vol 82 ◽  
pp. 20-27 ◽  
Author(s):  
Kazuki Watanabe ◽  
Yoshiharu Kariya ◽  
Naoyuki Yajima ◽  
Kizuku Obinata ◽  
Yoshiyuki Hiroshima ◽  
...  

2011 ◽  
Vol 2011 (0) ◽  
pp. _J031053-1-_J031053-3
Author(s):  
Naoki Saito ◽  
Naokazu Murata ◽  
Kinji Tamakawa ◽  
Ken Suzuki ◽  
Hideo Miura

Sign in / Sign up

Export Citation Format

Share Document