Drift region doping effects on characteristics and reliability of high-voltage n-type metal–oxide–semiconductor transistors

2015 ◽  
Vol 55 (1S) ◽  
pp. 01AD03
Author(s):  
Jone F. Chen ◽  
Chun-Po Chang ◽  
Yu Ming Liu ◽  
Yan-Lin Tsai ◽  
Hao-Tang Hsu ◽  
...  
2016 ◽  
Vol 55 (8S2) ◽  
pp. 08PD04
Author(s):  
Jone F. Chen ◽  
Teng-Jen Ai ◽  
Yan-Lin Tsai ◽  
Hao-Tang Hsu ◽  
Chih-Yuan Chen ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4149
Author(s):  
Xiang Li ◽  
Rui Li ◽  
Chunge Ju ◽  
Bo Hou ◽  
Qi Wei ◽  
...  

Micromachined gyroscopes require high voltage (HV) for actuation and detection to improve its precision, but the deviation of the HV caused by temperature fluctuations will degrade the sensor’s performance. In this paper, a high-voltage temperature-insensitive charge pump is proposed. Without adopting BCD (bipolar-CMOS-DMOS) technology, the output voltage can be boosted over the breakdown voltage of n-well/substrate diode using triple-well NMOS (n-type metal-oxide-semiconductor) transistors. By controlling the pumping clock’s amplitude continuously, closed-loop regulation is realized to reduce the output voltage’s sensitivity to temperature changes. Besides, the output level is programmable linearly in a large range by changing the reference voltage. The whole circuit has been fabricated in a 0.18- μ m standard CMOS (complementary metal-oxide-semiconductor) process with a total area of 2.53 mm 2 . Measurements indicate that its output voltage has a linear adjustable range from around 13 V to 16.95 V, and temperature tests show that the maximum variations of the output voltage at − 40 ∼ 80 ∘ C are less than 1.1%.


2013 ◽  
Vol 89 (1) ◽  
pp. 015803
Author(s):  
Abdel Alkhem ◽  
Rajko M Šašić ◽  
Petar M Lukić ◽  
Stanko M Ostojić

2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Shen-Li Chen ◽  
Chun-Ju Lin ◽  
Huang Yu-Ting

Abstract How to effectively enhance the reliability robustness in high-voltage (HV) BCD [(bipolar) complementary metal-oxide semiconductor (CMOS) diffusion metaloxide semiconductor (DMOS)] processes is an important issue. Influences of layouttype dependences on anti-electrostatic discharge (ESD) robustness in a 0.25-μm 60-V process will be studied in this chapter, which includes, in part (1), the traditional striped-type n-channel lateral-diffused MOSFET (nLDMOS), waffle-type nLDMOS, and nLDMOS embedded with a “p-n-p”-arranged silicon-controlled rectifier (SCR) devices in the drain side; and in part (2) a p-channel LDMOS (pLDMOS) with an embedded “p-n-p-n-p”-arranged-type SCR in the drain side (diffusion regions of the drain side is P+-N+-P+-N+-P+). Then, these LDMOS devices are used to evaluate the influence of layout architecture on trigger voltage (Vt1), holding voltage (Vh), and secondary breakdown current (It2). Eventually, the sketching of the layout pattern of a HV LDMOS is a very important issue in the anti-ESD consideration. Also, in part (1), the waffle-type nLDMOS DUT contributes poorly to It2 robustness due to the non-uniform turned-on phenomenon and a narrow channel width per unit finger. Therefore, the It2 robustness of a waffle-type nLDMOS device is decreased about 17% as compared to a traditional striped-type nLDMOS device (reference DUT-1). The ESD abilities of traditional stripedtype and waffle-type nLDMOS devices with an embedded SCR (“p-n-p”-manner arrangement in the drain side) are better than a traditional nLDMOS 224.4% in average. Noteworthy, the nLDMOS-SCR with the “p-n-p” -arranged-type in the drainend is a good structure for the anti-ESD reliability especially in HV usages. Furthermore, in part (2) this layout manner of P+ discrete-island distributions in the drain-side have some impacts on the anti-ESD and anti-latch-up (LU) immunities. All of their It2 values have reached above 6 A; however, the major repercussion is that the Vh value will be decreased about 66.7 ~ 73.7%.


Sign in / Sign up

Export Citation Format

Share Document