scholarly journals The Effect of Endurance Exercise Modality on Markers of Fatigue

Author(s):  
Andrew R. Moorea ◽  
Jasmin C. Hutchinsona ◽  
Christa R. Wintera ◽  
Paul C. Daltona ◽  
Vincent J. Paolonea

Background: Exercise power output, and resulting fatigue, is regulated based on central and peripheral sensory input. Whether exercise mode, specifically, contributes to this regulation remains unexplored. Objective: This study was designed to determine if differences in markers of fatigue would be present during two time trials of similar duration and intensity, as a result of exercise mode (cycling and rowing). Method: In a randomized crossover design, nine subjects completed the two 7-min time trials, on different days. Exercise power output, heart rate, rating of perceived exertion, and blood lactate measurements were analyzed using repeated-measures ANOVAs. Results: There was a significant interaction between mode and time for power output (p =.02), but no significant differences between matched time points were observed for any of the dependent variables used to assess fatigue (p >.05). Conclusion: Similar levels of heart rate, perceived exertion, and blood lactate for time trials on different modes, but with the same duration and directed intensity, suggest that in a laboratory environment, exercise is regulated more by physiological disturbance and sensory cues than by exercise mode. These findings support the sensory tolerance limit of exercise fatigue.

2016 ◽  
Vol 11 (6) ◽  
pp. 707-714 ◽  
Author(s):  
Benoit Capostagno ◽  
Michael I. Lambert ◽  
Robert P. Lamberts

Finding the optimal balance between high training loads and recovery is a constant challenge for cyclists and their coaches. Monitoring improvements in performance and levels of fatigue is recommended to correctly adjust training to ensure optimal adaptation. However, many performance tests require a maximal or exhaustive effort, which reduces their real-world application. The purpose of this review was to investigate the development and use of submaximal cycling tests that can be used to predict and monitor cycling performance and training status. Twelve studies met the inclusion criteria, and 3 separate submaximal cycling tests were identified from within those 12. Submaximal variables including gross mechanical efficiency, oxygen uptake (VO2), heart rate, lactate, predicted time to exhaustion (pTE), rating of perceived exertion (RPE), power output, and heart-rate recovery (HRR) were the components of the 3 tests. pTE, submaximal power output, RPE, and HRR appear to have the most value for monitoring improvements in performance and indicate a state of fatigue. This literature review shows that several submaximal cycle tests have been developed over the last decade with the aim to predict, monitor, and optimize cycling performance. To be able to conduct a submaximal test on a regular basis, the test needs to be short in duration and as noninvasive as possible. In addition, a test should capture multiple variables and use multivariate analyses to interpret the submaximal outcomes correctly and alter training prescription if needed.


Author(s):  
Thomas Losnegard ◽  
Sondre Skarli ◽  
Joar Hansen ◽  
Stian Roterud ◽  
Ida S. Svendsen ◽  
...  

Purpose: Rating of perceived exertion (RPE) is a widely used tool to assess subjective perception of effort during exercise. The authors investigated between-subject variation and effect of exercise mode and sex on Borg RPE (6–20) in relation to heart rate (HR), oxygen uptake (VO2), and capillary blood lactate concentrations. Methods: A total of 160 elite endurance athletes performed a submaximal and maximal test protocol either during cycling (n = 84, 37 women) or running (n = 76, 32 women). The submaximal test consisted of 4 to 7 progressive 5-minute steps within ∼50% to 85% of maximal VO2. For each step, steady-state HR, VO2, and capillary blood lactate concentrations were assessed and RPE reported. An incremental protocol to exhaustion was used to determine maximal VO2 and peak HR to provide relative (%) HR and VO2 values at submaximal work rates. Results: A strong relationship was found between RPE and %HR, %VO2, and capillary blood lactate concentrations (r = .80–.82, all Ps < .05). The between-subject coefficient of variation (SD/mean) for %HR and %VO2 decreased linearly with increased RPE, from ∼10% to 15% at RPE 8 to ∼5% at RPE 17. Compared with cycling, running induced a systematically higher %HR and %VO2 (∼2% and 5%, respectively, P < .05) with these differences being greater at lower intensities (RPE < 13). At the same RPE, women showed a trivial, but significantly higher %HR and %VO2 than men (<1%, P < .05). Conclusions: Among elite endurance athletes, exercise mode influenced RPE at a given %HR and %VO2, with greater differences at lower exercise intensities. Athletes should manage different tools to evaluate training based on intensity and duration of workouts.


2020 ◽  
pp. 1-5
Author(s):  
Megan Wagner ◽  
Kevin D. Dames

Context: Bodyweight-supporting treadmills are popular rehabilitation tools for athletes recovering from impact-related injuries because they reduce ground reaction forces during running. However, the overall metabolic demand of a given running speed is also reduced, meaning athletes who return to competition after using such a device in rehabilitation may not be as fit as they had been prior to their injury. Objective: To explore the metabolic effects of adding incline during bodyweight-supported treadmill running. Design: Cross-sectional. Setting: Research laboratory. Participants: Fourteen apparently healthy, recreational runners (6 females and 8 males; 21 [3] y, 1.71 [0.08] m, 63.11 [6.86] kg). Interventions: The participants performed steady-state running trials on a bodyweight-supporting treadmill at 8.5 mph. The control condition was no incline and no bodyweight support. All experimental conditions were at 30% bodyweight support. The participants began the sequence of experimental conditions at 0% incline; this increased to 1%, and from there on, 2% incline increases were introduced until a 15% grade was reached. Repeated-measures analysis of variance was used to compare all bodyweight-support conditions against the control condition. Main Outcome Measures: Oxygen consumption, heart rate, and rating of perceived exertion. Results: Level running with 30% bodyweight support reduced oxygen consumption by 21.6% (P < .001) and heart rate by 12.0% (P < .001) compared with the control. Each 2% increase in incline with bodyweight support increased oxygen consumption by 6.4% and heart rate by 3.2% on average. A 7% incline elicited similar physiological measures as the unsupported, level condition. However, the perceived intensity of this incline with bodyweight support was greater than the unsupported condition (P < .001). Conclusions: Athletes can maintain training intensity while running on a bodyweight-supporting treadmill by introducing incline. Rehabilitation programs should rely on quantitative rather than qualitative data to drive exercise prescription in this modality.


2020 ◽  
Vol 15 (10) ◽  
pp. 1476-1479
Author(s):  
Jordan L. Fox ◽  
Cody J. O’Grady ◽  
Aaron T. Scanlan

Purpose: To compare the concurrent validity of session-rating of perceived exertion (sRPE) workload determined face-to-face and via an online application in basketball players. Methods: Sixteen semiprofessional, male basketball players (21.8 [4.3] y, 191.2 [9.2] cm, 85.0 [15.7] kg) were monitored during all training sessions across the 2018 (8 players) and 2019 (11 players) seasons in a state-level Australian league. Workload was reported as accumulated PlayerLoad (PL), summated-heart-rate-zones (SHRZ) workload, and sRPE. During the 2018 season, rating of perceived exertion (RPE) was determined following each session via individualized face-to-face reporting. During the 2019 season, RPE was obtained following each session via a phone-based, online application. Repeated-measures correlations with 95% confidence intervals were used to determine the relationships between sRPE collected using each method and other workload measures (PL and SHRZ) as indicators of concurrent validity. Results: Although all correlations were significant (P < .05), sRPE obtained using face-to-face reporting demonstrated stronger relationships with PL (r = .69 [.07], large) and SHRZ (r = .74 [.06], very large) compared with the online application (r = .29 [.25], small [PL] and r = .34 [.22], moderate [SHRZ]). Conclusions: Concurrent validity of sRPE workload was stronger when players reported RPE in an individualized, face-to-face manner compared with using a phone-based online application. Given the weaker relationships with other workload measures, basketball practitioners should be cautious when using player training workloads predicated on RPE obtained via online applications.


2009 ◽  
Vol 19 (4) ◽  
pp. 400-409 ◽  
Author(s):  
Milou Beelen ◽  
Jort Berghuis ◽  
Ben Bonaparte ◽  
Sam B. Ballak ◽  
Asker E. Jeukendrup ◽  
...  

It has been reported previously that mouth rinsing with a carbohydrate-containing solution can improve cycling performance. The purpose of the current study was to investigate the impact of such a carbohydrate mouth rinse on exercise performance during a simulated time trial in a more practical, postprandial setting. Fourteen male endurance-trained athletes were selected to perform 2 exercise tests in the morning after consuming a standardized breakfast. They performed an ~1-hr time trial on a cycle ergometer while rinsing their mouths with either a 6.4% maltodextrin solution (CHO) or water (PLA) after every 12.5% of the set amount of work. Borg’s rating of perceived exertion (RPE) was assessed after every 25% of the set amount of work, and power output and heart rate were recorded continuously throughout the test. Performance time did not differ between treatments and averaged 68.14 ± 1.14 and 67.52 ± 1.00 min in CHO and PLA, respectively (p = .57). In accordance, average power output (265 ± 5 vs. 266 ± 5 W, p = .58), heart rate (169 ± 2 vs. 168 ± 2 beats/min, p = .43), and RPE (16.4 ± 0.3 vs. 16.7 ± 0.3 W, p = .26) did not differ between treatments. Furthermore, after dividing the trial into 8s, no differences in power output, heart rate, or perceived exertion were observed over time between treatments. Carbohydrate mouth rinsing does not improve time-trial performance when exercise is performed in a practical, postprandial setting.


2007 ◽  
Vol 2 (2) ◽  
pp. 201-211 ◽  
Author(s):  
Thomas Zochowski ◽  
Elizabeth Johnson ◽  
Gordon G. Sleivert

Context:Warm-up before athletic competition might enhance performance by affecting various physiological parameters. There are few quantitative data available on physiological responses to the warm-up, and the data that have been reported are inconclusive. Similarly, it has been suggested that varying the recovery period after a standardized warm-up might affect subsequent performance.Purpose:To determine the effects of varying post-warm-up recovery time on a subsequent 200-m swimming time trial.Methods:Ten national-caliber swimmers (5 male, 5 female) each swam a 1500-m warm-up and performed a 200-m time trial of their specialty stroke after either 10 or 45 min of passive recovery. Subjects completed 1 time trial in each condition separated by 1 wk in a counterbalanced order. Blood lactate and heart rate were measured immediately after warm-up and 3 min before, immediately after, and 3 min after the time trial. Rating of perceived exertion was measured immediately after the warm-up and time trial.Results:Time-trial performance was significantly improved after 10 min as opposed to 45 min recovery (136.80 ± 20.38 s vs 138.69 ± 20.32 s, P < .05). There were no significant differences between conditions for heart rate and blood lactate after the warm-up. Pre-time-trial heart rate, however, was higher in the 10-min than in the 45-min rest condition (109 ± 14 beats/min vs 94 ± 21 beats/min, P < .05).Conclusions:A post-warm-up recovery time of 10 min rather than 45 min is more beneficial to 200-m swimming time-trial performance.


1998 ◽  
Vol 23 (1) ◽  
pp. 56-65 ◽  
Author(s):  
Dixie L. Thompson ◽  
Keith A. West

A paucity of data exists related to the usefulness of Ratings of Perceived Exertion (RPE) to set exercise intensity in non-laboratory settings. The purpose of this study was to determine if RPE could be used on an outdoor track to generate blood lactate and heart rate (HR) responses similar to those obtained on a treadmill (tm) run. Nine experienced runners (6 males, 3 females; [Formula: see text]) completed a horizontal, incremental tm test. HR, RPE, and lactate were measured for each stage. Subsequently, subjects ran for 30 min on an outdoor track at the RPE corresponding with 2.5 mM lactate during the tm run. Repeated measures ANOVA compared lactate and HR values at 2.5 mM lactate on the tm run and values obtained during the track run. Lactate during the track run was significantly higher (p < .05) than 2.5 mM throughout the 30 min (6.9 ± 2.9, 63 ± 2.9, and 5.8 ± 3.0 mM at 10, 20, and 30 min, respectively). HR at 2.5 mM lactate during the tm run (173 ± 6.1 bpm) was significantly lower (p < .05) than at min 10 and 20 of the track run (182.6 ± 9.3 and 182.9 ± 8.0 bpm, respectively) but not different from min 30 (181.3 ± 10.6 bpm). In summary, it is difficult to generate specific physiological responses using RPE. Key words: RPE, Borg Scale, exercise, lactate, training


2002 ◽  
Vol 95 (3_suppl) ◽  
pp. 1047-1062 ◽  
Author(s):  
Mee-Lee Leung ◽  
Pak-Kwong Chung ◽  
Raymond W. Leung

This study evaluated the validity and reliability of the Chinese-translated (Cantonese) versions of the Borg 6–20 Rating of Perceived Exertion (RPE) scale and the Children's Effort Rating Table (CERT) during continuous incremental cycle ergometry with 10- to 11-yr.-old Hong Kong school children. A total of 69 children were randomly assigned, with the restriction of groups being approximately equal, to two groups using the two scales, CERT ( n = 35) and RPE ( n = 34). Both groups performed two trials of identical incremental continuous cycling exercise (Trials 1 and 2) 1 wk. apart for the reliability test. Objective measures of exercise intensity (heart rate, absolute power output, and relative oxygen consumption) and the two subjective measures of effort were obtained during the exercise. For both groups, significant Pearson correlations were found for perceived effort ratings correlated with heart rate ( rs ≥ .69), power output ( rs ≥ .75), and oxygen consumption ( rs ≥ .69). In addition, correlations for CERT were consistently higher than those for RPE. High test-retest intraclass correlations were found for both the effort ( R = .96) and perceived exertion ( R = 89) groups, indicating that the scales were reliable. In conclusion, the CERT and RPE scales, when translated into Cantonese, are valid and reliable measures of exercise intensity during controlled exercise by children. The Effort rating may be better than the Perceived Exertion scale as a measure of perceived exertion that can be more validly and reliably used with Hong Kong children.


2012 ◽  
Vol 7 (2) ◽  
pp. 121-129 ◽  
Author(s):  
Andrew Renfree ◽  
Julia West ◽  
Mark Corbett ◽  
Clare Rhoden ◽  
Alan St Clair Gibson

Purpose:This study examined the determinants of pacing strategy and performance during self-paced maximal exercise.Methods:Eight well-trained cyclists completed two 20-km time trials. Power output, rating of perceived exertion (RPE), positive and negative affect, and iEMG activity of the active musculature were recorded every 0.5 km, confidence in achieving preexercise goals was assessed every 5 km, and blood lactate and pH were measured postexercise. Differences in all parameters were assessed between fastest (FAST) and slowest (SLOW) trials performed.Results:Mean power output was significantly higher during the initial 90% of FAST, but not the final 10%, and blood lactate concentration was significantly higher and pH significantly lower following FAST. Mean iEMG activity was significantly higher throughout SLOW. Rating of perceived exertion was similar throughout both trials, but participants had significantly more positive affect and less negative affect throughout FAST. Participants grew less confident in their ability to achieve their goals throughout SLOW.Conclusions:The results suggest that affect may be the primary psychological regulator of pacing strategy and that higher levels of positivity and lower levels of negativity may have been associated with a more aggressive strategy during FAST. Although the exact mechanisms through which affect acts to influence performance are unclear, it may determine the degree of physiological disruption that can be tolerated, or be reflective of peripheral physiological status in relation to the still to be completed exercise task.


Sign in / Sign up

Export Citation Format

Share Document