scholarly journals Compact Enhanced CPW-Fed Antenna for UWB Applications

2021 ◽  
Vol 10 (1) ◽  
pp. 15-20
Author(s):  
H. Abdi ◽  
J. Nourinia ◽  
C. Ghobadi

This paper presents a compact antenna with co-planar waveguide (CPW) feed line for ultra-wideband (UWB) applications. The proposed antenna consists of a beveled radiating patch with wide rectangular slit at its upper side and a partial ground plane with insertion of symmetrically two-step beveled tapers at its center and sides, which provides a wide operating bandwidth. The antenna is integrated with narrow rectangular-shaped parasitic elements with different lengths placed adjacent to radiant patch to significantly enhance the impedance matching and bandwidth, especially at the upper frequencies. The measured results show an |S11| less than -10 dB bandwidth of 2.5-19.8 GHz with 155% fractional bandwidth. Simulation results are in good agreement with experimental measurements, which exhibits the validity of the proposed design approach. Moreover, the proposed CPW-fed antenna shows omnidirectional radiation patterns with stable gain within the operational range. The proposed compact antenna with low profile, light weight, large frequency bandwidth, ease of fabrication and low cost material is suitable for UWB applications.

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
A. Mchbal ◽  
N. Amar Touhami ◽  
H. Elftouh ◽  
A. Dkiouak

A compact ultra-wideband (UWB) multiple input-multiple output (MIMO) antenna with high isolation is designed for UWB applications. The proposed MIMO antenna consists of two identical monopole antenna elements. To enhance the impedance matching, three slots are formed on the ground plane. The arc structure as well as the semicircle with an open-end slot is employed on the radiating elements the fact which helps to extend the impedance bandwidth of the monopole antenna from 3.1 up to 10.6 GHz, which corresponds to the UWB band. A ground branch decoupling structure is introduced between the two elements to reduce the mutual coupling. Simulation and measurement results show a bandwidth range from 3.1 to 11.12 GHz with |S11_|<−15 dB, |S21_|<−20 dB, and ECC < 0.002.


Author(s):  
Davinder Parkash ◽  
Rajesh Khanna

This research work presents a microstrip-fed antenna that is small, low-profile, planar, and suitable for WLAN/WiMAX and partially ultra-wideband (UWB) applications. The radiating element of the proposed antenna consists of rectangular-shaped ring embedded with a three inverted “S”-shaped and inverted “C”-shaped strips. This antenna is capable of generating penta bands having good impedance matching with wideband characteristics. Prototype of the proposed antenna has been designed, simulated, fabricated, and tested. The overall small size of the antenna is 24.75 mm × 27.39 mm × 1.6 mm with volumetric size of 1 cm3. To understand the characteristics of the proposed antenna, the parametric studies are being performed. The return loss of the proposed antenna shows fair agreement with the simulated and measured results.


2019 ◽  
Vol 28 (13) ◽  
pp. 1950230 ◽  
Author(s):  
J. Vijayalakshmi ◽  
G. Murugesan

A miniaturized high-gain (MHG) ultra-wideband (UWB) unidirectional monopole antenna with defected ground structure (DGS) is designed for ultra-wideband applications. The MHG antenna is printed on the FR4 substrate material with an overall size of 26.6-mm [Formula: see text] 29.3-mm [Formula: see text] 1.6-mm, which operates over the UWB frequency range and achieves the bandwidth between 3.1[Formula: see text]GHz and 10.6[Formula: see text]GHz. This high-gain unidirectional antenna exhibits a peak gain of 7.20[Formula: see text]dB with an efficiency of 95%. The compact antenna is a simple overlay design of circular and rectangular patches with the partial ground plane exhibiting high gain and better directivity. The overlay patch antenna acts as the radiator for wider bandwidth compared to the fundamental design of patch antenna and is matched to an SMA connector via 50[Formula: see text][Formula: see text] microstrip feed line. These simulated results are presented using HFSS software package. The designed antennas are fabricated and validated by using Agilent Vector Analyzer.


Author(s):  
B. Hammache ◽  
A. Messai ◽  
I. Messaoudene ◽  
T. A. Denidni

Abstract In this paper, a compact stepped slot antenna for ultra-wideband (UWB) applications is proposed. A very small size and UWB bandwidth operation are achieved by integrating a stepped slot in the back side of the antenna. This stepped slot is excited by using a 50 Ω-feed line in the top side of the antenna. The antenna is characterized by an impedance bandwidth between 3.05 GHz and more than 12 GHz. The dimensions of the antenna are 17 mm × 8 mm × 1.27 mm, which leads to the most compact size compared with other works in the literature. The integrated stepped slot is divided into additional elementary slots, where each elementary slot has a matching point. Adding these elementary slots allows to increase further the operating bandwidth. The radiation pattern of the compact stepped slot antenna is omnidirectional in the H-plane and bidirectional in the E-plane. The measurement results agree well with the simulated ones in terms of impedance matching and radiation pattern.


2017 ◽  
Vol 7 (5) ◽  
pp. 1918-1921
Author(s):  
H. Alsaif

In this paper, a novel highly compact microstrip monopole antenna with adjusted ground plane for ultra-wideband (UWB) applications is proposed. The patch antenna is composed of a trimmed radiator and rectangular ground plane with four slots providing relatively extreme wide operating frequency from 2.8 till 16.2 GHz based on -10 dB criteria. The high matching impedance in the design results in ultra-wide bandwidth that covers the entire BW allocated by FCC for UWB applications. At the same time, the presented antenna is distinguished by significantly miniaturized structure with total size of 13 mm x 10 mm printed on a substrate material of Rogers Duriod RT 5880 LZ with relative permittivity of εr=1.9 and loss tangent δ of 0.0009. The suggested antenna is appropriate for miniature wireless gadgets. The patch has been investigated, and optimized in terms of operating frequency, impedance matching, radiation characteristics, structure size, and fabrication cost.


Author(s):  
Amro A. Nour ◽  
Ali Bostani ◽  
Girish Awadhwal

A tapered fork-shaped antenna having small ground for ultra-wide band (UWB) antenna is proposed in this paper. Finite element method has been successfully employed to simulate and optimize the feed line, ground, and tapered fork-shaped diameter to enhance the performance of the antenna in terms of bandwidth obviously for the ultra-wideband purposes. An acceptable impedance matching performance has been achieved, which is a band wider than the UWB band that is defined by the Federal Communications Commission (FCC). In this paper, the detailed design parameters including the key elements in bandwidth enhancement is presented. The results of the finite element simulations have been presented as well indicating the return loss and radiation pattern of the proposed antenna.


Author(s):  
PRAVEEN K P ◽  
T MARY NEEBHA

A Planar ultra wideband antenna design is analyzed for increased impedance matching in the Ultrawideband (UWB) range (3.1GHz to 10.6GHz). Also the effect of the ground plane is minimized by cutting slot on the ground plane. Impedance matching of Ultrawideband (UWB) antenna can be improved by introducing simple microstrip transitions between the 50-ohm feed line and the printed disc. In this paper a dual step feed is proposed between the feed line and radiator. It also offers a very simple geometry suitable for low cost fabrication and straightforward printed circuit board integration. Here triangle slot is provided on the ground plane in order to reduce the ground plane effect. The radiator used here is elliptical disc.


2021 ◽  
Vol 36 (7) ◽  
pp. 872-878
Author(s):  
Yuan Ye ◽  
Zhao Huang ◽  
Yun Jiang ◽  
Li-an Bian ◽  
Chang Zhu ◽  
...  

A low profile ultra-wideband tightly coupled dipole array is studied. The antenna elements are fed by Marchand baluns of small size and low cost. A metasurface based wide-angle impedance matching (MSWAIM) layer is introduced to replace the traditional dielectric WAIM, improving the beam scan performance and reducing the antenna profile. The simulation shows that the proposed antenna array can operate over 2.4-12.4 GHz, approximately 5:1 bandwidth with maximum scanning angle of 50o for both E plane and 45o for H plane. The antenna profile above the ground is only 0.578λH at the highest operating frequency. This antenna array can find its application in the forthcoming massive MIMO beamforming systems for 5G.


2018 ◽  
Vol 7 (2.7) ◽  
pp. 597
Author(s):  
EVV Satyanarayana ◽  
Vivek Kumar ◽  
D Mallikarjun Reddy ◽  
T Siva Paravathi ◽  
J Chandrasekhar Rao

The ultra wide band (UWB) Multiple-Input- Multiple-Output (MIMO) antenna with coplanar waveguide (CPW) having size of 18 x 23 x 0.8mm3 is designed for ultra-wideband (UWB) applications. The designed MIMO antenna contains two symmetrical circular disc loaded curved elliptical monopoles on top of the substrate and common ground plane with Y slot and extended T-shaped stub on bottom of substrate. The T- shape stub is placed on the ground plane to have the better antenna impedance matching and to enhance the isolation between the two antenna ports. To further improve the isolation in between the ports 1 and 2, and also on the ground plane a Y-shaped slot is fixed. Good impedance matching (|S11| < -10dB) in the range from 2.8GHz to 12 GHz is provided by the proposed antenna, and an enhanced isolation of -27dB, low ECC of below 0.002, an acceptable gain of about 7 dBi and an efficiency of above 90%. The obtained result proves that the designed antenna is more appropriate for the portable devices.  


Author(s):  
M. Tarikul Islam ◽  
M. Samsuzzaman ◽  
M. Z. Mahmud ◽  
M. T. Islam

A compact planner patch ultra-wideband (UWB) antenna is presented in this paper. The antenna configuration consists of a spectacles-shaped patch and a slotted ground plane. Different parameters are investigated for improving the antenna’s properties and for achieving the preferred UWB band (3.1–10.6 GHz). The experimental and simulated results demonstrate that the proposed antenna acquires an operating bandwidth of 117% (3–11.5 GHz) with a stable omnidirectional radiation pattern, about 89% of average radiation efficiency and 4.2 dBi of average gain with the maximum of 5.7 dBi at 10.2 GHz.


Sign in / Sign up

Export Citation Format

Share Document