scholarly journals Description of a new member of the family Erysipelotrichaceae: Dakotella fusiforme gen. nov., sp. nov., isolated from healthy human feces

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10071
Author(s):  
Sudeep Ghimire ◽  
Supapit Wongkuna ◽  
Joy Scaria

A Gram-positive, non-motile, rod-shaped facultative anaerobic bacterial strain SG502T was isolated from healthy human fecal samples in Brookings, SD, USA. The comparison of the 16S rRNA gene placed the strain within the family Erysipelotrichaceae. Within this family, Clostridium innocuum ATCC 14501T, Longicatena caecimuris strain PG-426-CC-2, Eubacterium dolichum DSM 3991T and E. tortuosum DSM 3987T(=ATCC 25548T) were its closest taxa with 95.28%, 94.17%, 93.25%, and 92.75% 16S rRNA sequence identities respectively. The strain SG502T placed itself close to C. innocuum in the 16S rRNA phylogeny. The members of genus Clostridium within family Erysipelotrichaceae was proposed to be reassigned to genus Erysipelatoclostridium to resolve the misclassification of genus Clostridium. Therefore, C. innocuum was also classified into this genus temporarily with the need to reclassify it in the future because of its difference in genomic properties. Similarly, genome sequencing of the strain and comparison with its 16S phylogenetic members and proposed members of the genus Erysipelatoclostridium, SG502T warranted a separate genus even though its 16S rRNA similarity was >95% when comapred to C. innocuum. The strain was 71.8% similar at ANI, 19.8% [17.4–22.2%] at dDDH and 69.65% similar at AAI to its closest neighbor C. innocuum. The genome size was nearly 2,683,792 bp with 32.88 mol% G+C content, which is about half the size of C. innocuum genome and the G+C content revealed 10 mol% difference. Phenotypically, the optimal growth temperature and pH for the strain SG502T were 37 °C and 7.0 respectively. Acetate was the major short-chain fatty acid product of the strain when grown in BHI-M medium. The major cellular fatty acids produced were C18:1ω9c, C18:0and C16:0. Thus, based on the polyphasic analysis, for the type strain SG502T (=DSM 107282T= CCOS 1889T), the name Dakotella fusiforme gen. nov., sp. nov., is proposed.


2019 ◽  
Author(s):  
Sudeep Ghimire ◽  
Supapit Wongkuna ◽  
Joy Scaria

ABSTRACTA Gram-positive, non-motile, rod-shaped facultative anaerobic bacterial strain SG502T was isolated from the healthy human fecal samples in Brookings, SD, USA. The comparison of the 16S rRNA gene placed the strain within the Clostridium cluster XVI, where, Clostridium innocuum ATCC 14501T, Longicatena caecimuris strain PG-426-CC-2, Eubacterium dolichum DSM 3991T and Eubacterium tortuosum DSM 3987T were its closest taxa with 95.15%, 94.49%, 93.28%, and 93.20% sequence identities respectively. The optimal growth temperature and pH for the strain SG502T were 37°C and 7.0 respectively. Acetate was the major short-chain fatty acid product of the strain SG502T when grown in BHI-M medium. The major cellular fatty acids produced by the strain SG502T were C18:1 ω9c, C18:0 and C16:0. The DNA G+C content of the strain was 34.34 mol%. The average nucleotide identity of the genome of the strain SG502T and its closest neighbor C. innocuum ATCC 14501T was 63.48%. Based on the polyphasic analysis, the type strain SG502T (=DSM 107282T), represents a novel species of the genus Clostridium for which the name Clostridium fusiformis sp. nov. is proposed.



2021 ◽  
Author(s):  
Yue Jiang ◽  
Yuxin Peng ◽  
Hyeon Ho Shin ◽  
Hyun Jung Kim ◽  
Ki-Hyun Kim ◽  
...  

Abstract A bacterial strain, designated J12C1-MA-4T, was isolated from a liquid culture of dinoflagellate Ceratoperidinium margalefii. The bacterium was Gram-stain-negative, aerobic, and rod-shaped. Oxidase and catalase were positive. Optimal growth was observed at 30°C, pH 7.0, in the presence of 1% (w/v) NaCl. Phylogenetic analyses based on the 16S rRNA gene and 92 core genes sets indicated that the strain J12C1-MA-4T belongs to the family Rhodobacteraceae in the class Alphaproteobacteria and represented a separate taxon separated from other genera. 16S rRNA gene sequence of strain J12C1-MA-4T showed high similarities to Loktanella ponticola KCTC 42133T (95.74%), Pseudooctadecabacter jejudonensis KCTC 32525T (95.52%) and Jannaschia helgolandensis KCTC 12191T (95.31%) in the Rhodobacteraceae family. The genome length of strain J12C1-MA-4T was 3621968 bp with a DNA G+C content of 64.48 mol%. The major cellular fatty acids of strain J12C1-MA-4T were summed feature 8 (comprising C18:1ω7c and/or C18:1ω6c) (>10%). Phosphatidylglycerol (PG), phosphatidylcholine(PC), phospholipids (PL), lipids 1 (L1) and aminolipid (AL) were shown to be the major polar lipids. The sole predominant isoprenoid quinone is Q-10. Based on phylogenetic, phenotypic, chemotaxonomic and genomic features, strain J12C1-MA-4T is considered to represent a new species in the new genus of the family Rhodobacteraceae for which the name Gymnodinialimonas ceratoperidinii gen. nov., sp. nov. is proposed. The type strain is J12C1-MA-4T (=KCTC 82770T = GDMCC 1.2729T).



2021 ◽  
Author(s):  
Dawoon Chung ◽  
Jaoon Young Hwan Kim ◽  
Kyung Woo Kim ◽  
Yong Min Kwon

Abstract A gram-negative, orange-pigmented, non-flagellated, gliding, rod-shaped, and aerobic bacterium, designated strain F202Z8T, was isolated from a rusty iron plate found in the intertidal region of Taean, South Korea. Notably, this strain synthesized silver nanoparticles (AgNPs), and 17 putative genes responsible for the synthesis of AgNPs were found in its genome. The complete genome sequence of strain F202Z8T is 4,723,614 bp, with 43.26% G + C content. Phylogenetic analysis based on 16S rRNA gene sequence revealed that strain F202Z8T forms a distinct lineage with closely related genera Maribacter, Pelagihabitans, Pseudozobellia, Zobellia, Pricia, and Costertonia belonging to the family Flavobacteriaceae. The 16S rRNA sequence similarity was < 94.5%. The digital DNA–DNA hybridization and average nucleotide identity values calculated from the whole genome-sequence comparison between strain F202Z8T and other members of the family Flavobacteriaceae were in the ranges of 12.7–16.9% and 70.3–74.4%, respectively. Growth was observed at 15–33°C (optimally at 30°C), at pH 6.5–7.5 (optimally at pH 7.0), and with the addition of 2.5–4.5% (w/v) NaCl to the media (optimally at 4.0%). The predominant cellular fatty acids were iso-C15: 0, iso-C15 :1 G, and iso-C17 :0 3-OH; the major respiratory quinone was MK-6. Polar lipids included phosphatidylethanolamine, five unidentified lipids, and two unidentified aminolipids. Our polyphasic taxonomic results suggested that this strain represents a novel species of a novel genus in the family Flavobacteriaceae, for which the name Aggregatimonas sangjinii gen. nov., sp. nov. is proposed. The type strain of Aggregatimonas sangjinii is F202Z8T (= KCCM 43411T = LMG 31494T).



2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hussein Anani ◽  
Rita Abou Abdallah ◽  
May Khoder ◽  
Anthony Fontanini ◽  
Morgane Mailhe ◽  
...  

AbstractThe gut microbiota is considered to play a key role in human health. As a consequence, deciphering its microbial diversity is mandatory. A polyphasic taxonogenomic strategy based on the combination of phenotypic and genomic analyses was used to characterize a new bacterium, strain Marseille-P2911. This strain was isolated from a left colon sample of a 60-year old man who underwent a colonoscopy for an etiological investigation of iron-deficiency anemia in Marseille, France. On the basis of 16S rRNA sequence comparison, the closest phylogenetic neighbor was Anaeroglobus geminatus (94.59% 16S rRNA gene sequence similarity) within the family Veillonellaceae. Cells were anaerobic, Gram-stain-positive, non-spore-forming, catalase/oxidase negative cocci grouped in pairs. The bacterium was able to grow at 37 °C after 2 days of incubation. Strain Marseille-P2911 exhibited a genome size of 1,715,864-bp with a 50.2% G + C content, and digital DNA-DNA hybridization (dDDH) and OrthoANI values with A. geminatus of only 19.1 ± 4.5% and 74.42%, respectively. The latter value being lower than the threshold for genus delineation (80.5%), we propose the creation of the new genus Colibacter gen. nov., with strain Marseille-P2911T (=DSM 103304 = CSUR P2911) being the type strain of the new species Colibacter massiliensis gen. nov., sp. nov.



2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 1083-1088 ◽  
Author(s):  
Kai Chen ◽  
Shu-Kun Tang ◽  
Guang-Li Wang ◽  
Guo-Xing Nie ◽  
Qin-Fen Li ◽  
...  

Bacterial strain 14-2AT, isolated from a long-term DDT-contaminated soil in China, was characterized by using a polyphasic approach to clarify its taxonomic position. Strain 14-2AT was found to be Gram-negative, aerobic, non-spore-forming, non-motile, non-flagellated and rod-shaped. The new isolate was able to grow at 4–42 °C, pH 6.0–9.0 and with 0–5 % NaCl. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolate belongs to the family Sphingobacteriaceae . The 16S rRNA gene sequence of strain 14-2AT showed the highest similarity with Olivibacter oleidegradans TBF2/20.2T (99.4 %), followed by Pseudosphingobacterium domesticum DC-186T (93.8 %), Olivibacter ginsengisoli Gsoil 060T (93.6 %), Olivibacter terrae Jip13T (93.1 %), Olivibacter soli Gsoil 034T (92.8 %) and Olivibacter sitiensis AW-6T (89.6 %). The DNA–DNA hybridization value between strains 14-2AT and O. oleidegradans TBF2/20.2T was 34.45±2.11 %. Strain 14-2AT contained phosphatidylethanolamine, phosphatidylmonomethylethanolamine, aminophospholipid and phosphatidylinositol mannoside as the major polar lipids. The DNA G+C content was 41.2 mol%. MK-7 is the major isoprenoid quinone. Summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), iso-C15 : 0 and iso-C17 : 0 3-OH are the major fatty acids. The phenotypic and chemotaxonomic data confirmed the affiliation of strain 14-2AT to the genus Olivibacter . On the basis of the phylogenetic and phenotypic characteristics, and chemotaxonomic data, strain 14-2AT is considered to represent a novel species of the genus Olivibacter , for which the name Olivibacter jilunii sp. nov. is proposed; the type strain is 14-2AT ( = KCTC 23098T = CCTCC AB 2010105T).



2007 ◽  
Vol 57 (7) ◽  
pp. 1402-1407 ◽  
Author(s):  
M. C. Gutiérrez ◽  
A. M. Castillo ◽  
M. Kamekura ◽  
Y. Xue ◽  
Y. Ma ◽  
...  

Strain SH-6T was isolated from the sediment of Lake Shangmatala, a saline lake in Inner Mongolia (China). Cells were pleomorphic. The organism was neutrophilic and required at least 2.5 M (15 %) NaCl, but not MgCl2, for growth; optimal growth occurred at 4.3 M (25 %) NaCl. The G+C content of its DNA was 63.1 mol%. 16S rRNA gene sequence analysis revealed that strain SH-6T is a member of the family Halobacteriaceae, but there was a low level of similarity with other members of this family. Highest sequence similarity (94.6 %) was obtained with the 16S rRNA genes of the type strains of Natronolimnobius innermongolicus and Natronolimnobius baerhuensis. Polar lipid analyses revealed that strain SH-6T contains phosphatidylglycerol and phosphatidylglyceromethylphosphate, derived from both C20C20 and C20C25 glycerol diethers together with the glycolipid S2-DGD-1. On the basis of the data obtained, the new isolate could not be classified in any recognized genus. Strain SH-6T is thus considered to represent a novel species in a new genus within the family Halobacteriaceae, order Halobacteriales, for which the name Halopiger xanaduensis gen. nov., sp. nov. is proposed. The type strain of Halopiger xanaduensis is SH-6T (=CECT 7173T=CGMCC 1.6379T=JCM 14033T).



2013 ◽  
Vol 63 (Pt_12) ◽  
pp. 4484-4488 ◽  
Author(s):  
R. Kathiravan ◽  
S. Jegan ◽  
V. Ganga ◽  
V. R. Prabavathy ◽  
L. Tushar ◽  
...  

The taxonomic position of strain MSSRFBL1T, isolated from chickpea rhizosphere soil from Kannivadi, India, was determined. Strain MSSRFBL1T formed bluish black colonies, stained Gram-negative and was motile, aerobic, capable of fixing dinitrogen, oxidase-negative and catalase-positive. Q-10 was the major respiratory quinone. Major fatty acids of strain MSSRFBL1T were C18 : 1ω7c and C19 : 0cycloω8c. Minor amounts of C18 : 0, C12 : 0, C14 : 0 3-OH, C18 : 0 3-OH, C16 : 0, C16 : 1ω6c/C16 : 1ω7c, C17 : 0 3-OH and C20 : 1ω7c were also present. Polar lipids included diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine, phosphatidylcholine and two unidentified glycolipids. Bacteriohopane derivatives (BHD1 and 2), diplopterol, diploptene, bishomohopanediol, adenosylhopane and 2β-methyl bacteriohopanetetrol were the major hopanoids of strain MSSRFBL1T. The genomic DNA G+C content was 71 mol%. EzTaxon-e-based blast analysis of the 16S rRNA gene indicated the highest similarity of strain MSSRFBL1T to Ensifer adhaerens LMG 20216T (97.3 %) and other members of the genus Ensifer (<96.9 %) in the family Rhizobiaceae of the class Alphaproteobacteria . However, phylogenetic analysis based on 16S rRNA, recA, thrC and dnaK gene sequences showed distinct out-grouping from the recognized genera of the family Rhizobiaceae . Based on phenotypic, genotypic and chemotaxonomic characters, strain MSSRFBL1T represents a novel species in a new genus in the family Rhizobiaceae for which the name Ciceribacter lividus gen. nov., sp. nov. is proposed. The type strain of Ciceribacter lividus is MSSRFBL1T ( = DSM 25528T = KCTC 32403T).



2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1902-1907 ◽  
Author(s):  
Miho Watanabe ◽  
Hisaya Kojima ◽  
Manabu Fukui

A novel sulfate-reducing bacterium, designated strain Pf12BT, was isolated from sediment of meromictic Lake Harutori in Japan. Cells were vibroid (1.0 × 3.0–4.0 μm), motile and Gram-stain-negative. For growth, the optimum pH was 7.0–7.5 and the optimum temperature was 42–45 °C. Strain Pf12BT used sulfate, thiosulfate and sulfite as electron acceptors. The G+C content of the genomic DNA was 55.4 mol%. Major cellular fatty acids were C16 : 0 and C18 : 0. The strain was desulfoviridin-positive. Phylogenetic analysis based on the 16S rRNA gene revealed that the novel strain belonged to the order Desulfovibrionales in the class Deltaproteobacteria. The closest relative was Desulfomicrobium baculatum DSM 4028T with which it shared 91  % 16S rRNA gene sequence similarity. On the basis of phylogenetic and phenotypic characterization, a novel species of a new genus belonging to the family Desulfomicrobiaceae is proposed, Desulfoplanes formicivorans gen. nov., sp. nov. The type strain of Desulfoplanes formicivorans is Pf12BT ( = NBRC 110391T = DSM 28890T).



1994 ◽  
Vol 40 (4) ◽  
pp. 313-318 ◽  
Author(s):  
M. Sajjad Mirza ◽  
Dittmar Hahn ◽  
Svetlana V. Dobritsa ◽  
Antoon D. L. Akkermans

Part of the 16S rRNA gene was amplified directly from uncultured endophyte populations within the root nodules of Datisca cannabina and three strains isolated from nodules of Alnus glutinosa (AgKG′84/4), Coriaria nepalensis (Cn3), and D. cannabina (Dc2). Sequence comparison based on 930 nucleotides indicated that the endophyte of D. cannabina nodules belongs to the genus Frankia and is highly related to the endophyte of C. nepalensis root nodules. The relatedness of the endophytes of C. nepalensis and D. cannabina nodules was also reflected by closely related nifH sequences amplified from the nodules. 16S rRNA sequence analysis of the noninfective strains obtained from both D. cannabina (Dc2) and C. nepalensis (Cn3) nodules also revealed the close relationship of these strains to the genus Frankia.Key words: nitrogen fixation, Frankia, 16S rRNA, nifH.



2007 ◽  
Vol 57 (5) ◽  
pp. 1050-1054 ◽  
Author(s):  
Seung Seob Bae ◽  
Kae Kyoung Kwon ◽  
Sung Hyun Yang ◽  
Hee-Soon Lee ◽  
Sang-Jin Kim ◽  
...  

A marine bacterium, DOKDO 007T, was isolated from the rhizosphere of the marine alga Ecklonia kurome collected from Dokdo Island, Korea, in October 2004. The strain produced orange-coloured colonies on marine agar 2216. 16S rRNA gene sequence analysis indicated that the novel isolate belonged to the family Flavobacteriaceae and showed relatively high sequence similarities with members of the genus Muricauda (92.0–94.0 %). Phylogenetic analysis based on nearly complete 16S rRNA gene sequences revealed that the novel isolate shared a lineage with members of the genera Muricauda and Costertonia. Cells were aerobic, Gram-negative rods producing non-diffusible carotenoid pigments. In contrast to all other members of the family Flavobacteriaceae, cells of DOKDO 007T were motile by means of a polar flagellum. Optimal growth occurred in the presence of 3.5–4 % (w/v) sea salts (corresponding to 2.7–3.1 % NaCl), at pH 8 and at temperatures of 26–29 °C. The novel strain required Ca2+ ions in addition to NaCl for growth. The dominant fatty acids were iso-15 : 0, iso-15 : 1ω10c and 10-methyl-16 : 0. The major respiratory quinone was MK-6. The DNA G+C content was 56.3 mol%, an unusually high value for members of the family Flavobacteriaceae. On the basis of these polyphasic taxonomic data, strain DOKDO 007T should be classified as representing a new genus and novel species in the family Flavobacteriaceae, for which the name Flagellimonas eckloniae gen. nov., sp. nov. is proposed. The type strain is DOKDO 007T (=KCCM 42307T=JCM 13831T).



Sign in / Sign up

Export Citation Format

Share Document