scholarly journals Measurement error using a SeeMaLab structured light 3D scanner against a Microscribe 3D digitizer

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11804
Author(s):  
Dolores Messer ◽  
Michelle S. Svendsen ◽  
Anders Galatius ◽  
Morten T. Olsen ◽  
Vedrana A. Dahl ◽  
...  

Background Geometric morphometrics is a powerful approach to capture and quantify morphological shape variation. Both 3D digitizer arms and structured light surface scanners are portable, easy to use, and relatively cheap, which makes these two capturing devices obvious choices for geometric morphometrics. While digitizer arms have been the “gold standard”, benefits of having full 3D models are manifold. We assessed the measurement error and investigate bias associated with the use of an open-source, high-resolution structured light scanner called SeeMaLab against the popular Microscribe 3D digitizer arm. Methodology The analyses were based on 22 grey seal (Halichoerus grypus) skulls. 31 fixed anatomical landmarks were annotated both directly using a Microscribe 3D digitizer and on reconstructed 3D digital models created from structured light surface scans. Each skull was scanned twice. Two operators annotated the landmarks, each twice on all the skulls and 3D models, allowing for the investigation of multiple sources of measurement error. We performed multiple Procrustes ANOVAs to compare the two devices in terms of within- and between-operator error, to quantify the measurement error induced by device, to compare between-device error with other sources of variation, and to assess the level of scanning-related error. We investigated the presence of general shape bias due to device and operator. Results Similar precision was obtained with both devices. If landmarks that were identified as less clearly defined and thus harder to place were omitted, the scanner pipeline would achieve higher precision than the digitizer. Between-operator error was biased and seemed to be smaller when using the scanner pipeline. There were systematic differences between devices, which was mainly driven by landmarks less clearly defined. The factors device, operator and landmark replica were all statistically significant and of similar size, but were minor sources of total shape variation, compared to the biological variation among grey seal skulls. The scanning-related error was small compared to all other error sources. Conclusions As the scanner showed precision similar to the digitizer, a scanner should be used if the advantages of obtaining detailed 3D models of a specimen are desired. To obtain high precision, a pre-study should be conducted to identify difficult landmarks. Due to the observed bias, data from different devices and/or operators should not be combined when the expected biological variation is small, without testing the landmarks for repeatability across platforms and operators. For any study necessitating the combination of landmark measurements from different operators, the scanner pipeline will be better suited. The small scanning-related error indicates that by following the same scanning protocol, different operators can be involved in the scanning process without introducing significant error.


2020 ◽  
Vol 130 (4) ◽  
pp. 800-812 ◽  
Author(s):  
Juan Vrdoljak ◽  
Kevin Imanol Sanchez ◽  
Roberto Arreola-Ramos ◽  
Emilce Guadalupe Diaz Huesa ◽  
Alejandro Villagra ◽  
...  

Abstract The repeatability of findings is the key factor behind scientific reliability, and the failure to reproduce scientific findings has been termed the ‘replication crisis’. Geometric morphometrics is an established tool in evolutionary biology. However, different operators (and/or different methods) could act as large sources of variation in the data obtained. Here, we investigated inter-operator error in geometric morphometric protocols on complex shapes of Liolaemus lizards, as well as measurement error in three taxa varying in their difficulty of digitalization. We also examined the potential for these protocols to discriminate among complex shapes in closely related species. We found a wide range of inter-operator error, contributing between 19.5% and 60% to the total variation. Moreover, measurement error increased with the complexity of the quantified shape. All protocols were able to discriminate between species, but the use of more landmarks did not imply better performance. We present evidence that complex shapes reduce repeatability, highlighting the need to explore different sources of variation that could lead to such low repeatability. Lastly, we suggest some recommendations to improve the repeatability and reliability of geometric morphometrics results.



2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jerzy Montusiewicz ◽  
Marek Miłosz ◽  
Jacek Kęsik ◽  
Kamil Żyła

AbstractHistorical costumes are part of cultural heritage. Unlike architectural monuments, they are very fragile, which exacerbates the problems of their protection and popularisation. A big help in this can be the digitisation of their appearance, preferably using modern techniques of three-dimensional representation (3D). The article presents the results of the search for examples and methodologies of implementing 3D scanning of exhibited historical clothes as well as the attendant problems. From a review of scientific literature it turns out that so far practically no one in the world has made any methodical attempts at scanning historical clothes using structured-light 3D scanners (SLS) and developing an appropriate methodology. The vast majority of methods for creating 3D models of clothes used photogrammetry and 3D modelling software. Therefore, an innovative approach was proposed to the problem of creating 3D models of exhibited historical clothes through their digitalisation by means of a 3D scanner using structural light technology. A proposal for the methodology of this process and concrete examples of its implementation and results are presented. The problems related to the scanning of 3D historical clothes are also described, as well as a proposal how to solve them or minimise their impact. The implementation of the methodology is presented on the example of scanning elements of the Emir of Bukhara's costume (Uzbekistan) from the end of the nineteenth century, consisting of the gown, turban and shoes. Moreover, the way of using 3D models and information technologies to popularise cultural heritage in the space of digital resources is also discussed.



Author(s):  
Valentina P. Vetrova ◽  
◽  
Alexey P. Barchenkov ◽  
Nadezhda V. Sinelnikova ◽  
◽  
...  

Geometric morphometric analysis of shape variation in the cone scales of two closely related larch species, Larix dahurica Laws. (=Larix gmelinii (Rupr.) Rupr) and L. cajanderi Mayr, was carried out. The data on the taxonomy and distribution of L. dahurica and L. cajanderi are contradictory. The taxonomic status of L. cajanderi has been confirmed by the genetic and morphological studies performed in Russia and based on considerable evidence, but the species has not been recognized internationally, being considered as a synonym of Larix gmelinii var. gmelinii. In the systematics of larch, morphological characters of the generative organs are mainly used as diagnostic markers, among the most important being the shape variation of the cone scales. The aim of this study was to test geometric morphometrics as a tool for analyzing differentiation of L. dahurica and L. cajanderi in the shape of their cone scales. Characterization of shape variations in cone scales using geometric morphometric methods consists in digitizing points along an outline of scales followed by analysis of partial warps, describing individual differences in coordinates of the outline points. We studied the populations of L. dahurica from Evenkia and the Trans-Baikal region and six L. cajanderi populations from Yakutia and Magadan Oblast. In each population, we analyzed samples of 100-150 cones collected from 20-30 trees. Scales taken from the middle part of the cones were scanned using an Epson Perfection V500 Photo. On the scanned images, outline points were placed with a TPSDig program (Rolf, 2010), using angular algorithm (Oreshkova et al., 2015). The data were processed and analyzed using Integrated Morphometrics Programs (IMP) software (http://www.canisius.edu/~sheets/ morphsoft.html, Sheets, 2001), following the guidelines on geometric morphometrics in biology (Pavlinov, Mikeshina, 2002; Zelditch et al., 2004). Initial coordinates of the scale landmarks were aligned with the mean structure for L. dahurica and L. cajanderi cone scales using Procrustes superimposition in the CoordGen6 program. PCA based on covariances of partial warp scores was applied to reveal directions of variation in the shape of the cone scales. The relative deformations of the cone scales (PCA scores) were used as shape variables for statistical comparisons of these two larch species with canonical discriminant analysis. Morphotypes of the cone scales were distinguished in L. dahurica populations by pairwise comparison of samples from trees in the TwoGroup6h program using Bootstrap resampling-based Goodall’s F-test (Sheets, 2001). Samples from the trees in which the cone scales differed significantly (p < 0.01) were considered to belong to different morphotypes. Morphotypes distinguished in L. dahurica populations were compared with the morphotypes that we had previously determined in L. cajanderi populations. The composition and the frequency of occurrence of morphotypes were used to determine phenotypic distances between populations (Zhivotovskii, 1991). Multidimensional scaling matrix of the phenotypic distances was applied for ordination of larch populations. In this research, we revealed differentiation of L. dahurica and L. cajanderi using geometric morphometric analysis of the shape variation of cone scales. The results of PCA of partial warp scores exposed four principal components, which account for 90% of total explained variance in the shape of the cone scales in the two larch species. Graphical representations of these shape transformations in the vector form characterized directions of shape variability in scales corresponding to the maximum and minimum values of four principal components (See Fig. 2). PCA-ordination of the larch populations revealed some difference in the shape variation of the cone scales in L. dahurica and L. cajanderi (See Fig. 3). The results of canonical discriminant analysis of relative deformations of scales showed differentiation of the populations of the two larch species (See Fig. 4). Eleven morphotypes were identified in L. dahurica cones from Evenkia and nine morphotypes in the Ingoda population, three of the morphotypes being common for both populations (See Fig. 5). The shape of L. dahurica cone scales varied from spatulate to oval and their apical margins from weakly sinuate to distinctly sinuate. The Trans-Baikal population was dominated by scales with obtuse (truncate) and rounded apexes. The obtained morphotypes were compared with 25 cone scale morphotypes previously distinguished in the Yakut and the Magadan L. cajanderi populations (See Fig. 3). Four similar morphotypes of cone scales were revealed in the North-Yeniseisk population of L. dahurica and the Yakut populations of L. cajanderi. The differences between them in the populations of the two larch species were nonsignificant (p > 0.01). All morphotypes of cone scales from the Ingoda population of L. dahurica differed significantly from L. cajanderi cone scale morphotypes. The results of multidimensional scaling phenotypic distance matrix calculated based on the similarity of morphotypes of L. dahurica and L. cajanderi populations were consistent with the results of their differentiation based on relative deformations of scales obtained using canonical discriminant analysis (See Fig. 4 and Fig. 7). In spite of the differences in the shape of the cone scales between the North-Yeniseisk and the Trans-Baikal populations of L. dahurica, they both differed from L. cajanderi populations. Thus, phenotypic analysis confirmed differentiation of these two larch species. Despite the similarities between a number of morphotypes, the Yakut L. cajanderi populations were differentiated from L. dahurica populations. Significant differences were noted between intraspecific groups: between L. cajanderi populations from Okhotsk-Kolyma Upland and Yakutia and between L. dahurica populations from Evenkia and the Trans-Baikal region (See Fig. 4). The similarities between species and intraspecific differences may be attributed to the ongoing processes of hybridization and species formation in the region where the ranges of the larches overlap with the ranges of L. czekanowskii Szafer and L. dahurica×L. cajanderi hybrids. Geometric morphometrics can be used as an effective tool for analyzing differentiation of L. dahurica and L. cajanderi in the shape of their cone scales.



2018 ◽  
Vol 2 ◽  
pp. e25794
Author(s):  
Douglas Russell ◽  
Arianna Bernucci ◽  
Amy Scott-Murray ◽  
Duncan Jackson ◽  
Farah Ahmed ◽  
...  

High resolution X-ray micro-computed tomography gives the ability to research objects in unprecedented detail in 3D without damaging them but applying these new techniques to specimens can be complex. In 2017 the Natural History Museum (NHM), London embarked on a ground-breaking project with University of Sheffield to compare extinct Great Auk Pinguinus impennis eggshell microstructure to that of their extant relatives to gain new insight into their breeding ecology. NHM has a ZEISS Xradia 520 Versa X-ray microscope capable of submicron X-ray imaging in 3D but using it required supporting and moving complete eggshells within the confined, potentially harsh, mechanised environment of the microscope without risk. Ensuring the correct position and orientation of each egg to image nine distinct areas on the eggshell was also a challenge. Collaboration with colleagues in the NHM Conservation and Imaging &amp; Analysis Centres developed a bespoke solution to hold and protect the eggs during scanning. All six NHM Great Auk eggshells and the inside of the microscope were surface scanned using a handheld structured light scanner. Scan data produced 3D models from which accurate 3D printed plastic replicas were made of the three Great Auk eggs prioritised for research. Each replica was used to mould a two-part, custom-built, case for each egg constructed from conservation grade epoxy putty and lined with polyethylene foam. This provided close-fitting, durable cases which could be used for the 6-month duration of the project. Each case enclosed its matching Great Auk egg entirely and had the advantage of being rock-hard, electrically insulating and water, heat and chemical resistant. A system of three, interchangeable, tailor-made mounting brackets were designed that married with the cases and held them safely and precisely inside the microscope at the correct angles and positions for imaging. The structured light scan of the inside of the microscope was used to model the necessary rotational movements of the cases and brackets inside the scanner, ensuring that all movements had sufficient clearance to avoid risk of impact. This system successfully protected the fragile c. 200 year old eggs throughout 70 scanning sessions. This provides a methodology for high resolution X-ray micro-computed tomography imaging of any similarly sized, fragile, object.



2013 ◽  
Vol 16 (2) ◽  
pp. 590-600 ◽  
Author(s):  
Paul G. Sanfilippo ◽  
Alex W. Hewitt ◽  
Jenny A. Mountain ◽  
David A. Mackey

Twin studies are extremely useful for investigating hypotheses of genetic influence on a range of behavioral and physical traits in humans. Studies of physical traits, however, are usually limited to size-related biological characteristics because it is inherently difficult to quantify the morphological counterpart – shape. In recent years, the development of geometry-preserving analytical techniques built upon multivariate statistical methodologies has produced a new discipline in biological shape analysis known as geometric morphometrics. In this study of hand shape analysis, we introduce the reader already familiar with the field of twin research to the potential utility of geometric morphometrics and demonstrate the cross-discipline applicability of methods. We also investigate and compare the efficacy of the 2D:4D ratio, a commonly used marker of sexual dimorphism, to the fully multivariate approach of shape analysis in discriminating between male and female sex. Studies of biological shape variation utilizing geometric morphometric techniques may be completed with software freely available on the Internet and time invested to master the small learning curve in concepts and theory.



Author(s):  
Nicolas D Prinsloo ◽  
Martin Postma ◽  
P J Nico de Bruyn

Abstract Quantified coat pattern dissimilarity provides a visible surface for individual animal traceability to populations. We determined the feasibility in quantifying uniqueness of stripe patterns of Cape mountain zebra (CMZ; Equus zebra zebra) using geometric morphometrics. We photogrammetrically created dense surface models of CMZ (N = 56). Stripe edges were landmarked, superimposed and compared for shape variation across replicates and the population. Significant allometry in stripe patterns prompted allometric correction to remove increased curvature of stripes at the rump, belly and back with larger adult individuals, to facilitate equilibrated comparison between individuals. Re-landmarked replicates showed lower dissimilarity (Di) than non-replicates (Dp), representing minimal landmarking error. Individuals were 78.07 ± 1.79% unique (U=1−DiDp×100%) relative to the study population. Size, the number of torso stripes and degree of branching in four rear torso stripes described the most shape variation (36.79%) but a significant portion could only be distinguished with geometric morphometrics (41.82%). This is the first known use of geometric morphometrics to quantify coat pattern uniqueness, using a model species to provide baseline individual morphological variation. Measures of coat pattern similarity have a place in phenotypic monitoring and identification.



Author(s):  
Merrill Lee ◽  
Jade Pei Yuik Ho ◽  
Jerry Yongqiang Chen ◽  
Chung Kia Ng ◽  
Seng Jin Yeo ◽  
...  

Abstract Background Restoration of the anatomical joint line, while important for clinical outcomes, is difficult to achieve in revision total knee arthroplasty (rTKA) due to distal femoral bone loss. The objective of this study was to determine a reliable method of restoring the anatomical joint line and posterior condylar offset in the setting of rTKA based on three-dimensional (3D) reconstruction of computed tomography (CT) images of the distal femur. Methods CT scans of 50 lower limbs were analyzed. Key anatomical landmarks such as the medial epicondyle (ME), lateral epicondyle, and transepicondylar width (TEW) were determined on 3D models constructed from the CT images. Best-fit planes placed on the most distal and posterior loci of points on the femoral condyles were used to define the distal and posterior joint lines, respectively. Statistical analysis was performed to determine the relationships between the anatomical landmarks and the distal and posterior joint lines. Results There was a strong correlation between the distance from the ME to the distal joint line of the medial condyle (MEDC) and the distance from the ME to the posterior joint line of the medial condyle (MEPC) (p < 0.001; r = 0.865). The mean ratio of MEPC to MEDC was 1.06 (standard deviation [SD]: 0.07; range: 0.88–1.27) and that of MEPC to TEW was 0.33 (SD: 0.03; range: 0.25–0.38). Conclusions Our findings suggest that the fixed ratios of MEPC to TEW (0.33) and that of MEPC to MEDC (1.06) provide a reliable means for the surgeon to determine the anatomical joint line when used in combination.



Primates ◽  
2019 ◽  
Vol 60 (5) ◽  
pp. 401-419
Author(s):  
Takeshi Nishimura ◽  
Naoki Morimoto ◽  
Tsuyoshi Ito


2016 ◽  
Vol 4 (16) ◽  
pp. 1
Author(s):  
Mariya A. Chursina ◽  
Oleg P. Negrobov

A study of 186 specimens of Poecilobothrus regalis was conducted in order to examine intraspecific variability of wing shape. The wing shape variation was analyzed using geometric morphometrics analyses. Significant differences in the structure of wing were found both between sexes and between populations. Differences between sexes were observed in the structure of the medium portion of wing. The first extracted canonical variate of geographic variation showed a moderately linear association with latitude and average temperature of February and March. The second canonical variate was correlated with longitude and values of average wind flow velocity. Allometric relationships were weak both between populations and sexes.



Sign in / Sign up

Export Citation Format

Share Document