scholarly journals Genetic diversity and structure of one of the most endangered freshwater fish species in Mexico: Tlaloc hildebrandi (Miller, 1950) and recognition of its evolutionarily significant units

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11952
Author(s):  
Rosa G. Beltrán-López ◽  
Alfonso A. González-Díaz ◽  
Miriam Soria-Barreto ◽  
Marco Antonio Garduño-Sánchez ◽  
Carmela Xochitla-Castrejón ◽  
...  

The endangered Chiapas killifish Tlaloc hildebrandi is an endemic freshwater species that lives in four subbasins of the Grijalva and Usumacinta basins, and one of the most geographically restricted species of the Produndulidae family. The species was originally described as endemic to springs in the high limestone plateau in San Cristóbal de Las Casas in the Río Amarillo subbasin (upper Grijalva basin). However, it was recently recorded in the Jataté and Tzaconejá subbasins in the upper Usumacinta basin, thereby expanding its known distribution range. The discovery of these populations is relevant not only for the conservation of the species but also for a better understanding of its evolutionary history. Currently, the scarce populations of T. hildebrandi, found in only a few localities in the Grijalva and Usumacinta basins, are fragmented and living under unfavorable conditions. Here, we analyzed three mitochondrial (mt-atp8&6 and mt-nd2) and one nuclear (nuc-s7) marker in order to assess the genetic diversity and population structure of T. hildebrandi. We found that, in comparison with other endangered freshwater fish species from Mexico, T. hildebrandi showed a lower level of genetic diversity (mt-nd2: h = 0.469, π = 0.0009; mt-atp8&6: h = 0.398, π = 0.001; and nuc-S7: h = 0.433, π = 0.001). Moreover, the analyzed populations exhibited a strong genetic structure in accordance with their geographic distribution, and can be placed into three genetic clusters: (1) Amarillo plus Chenhaló in the upper Grijalva basin, (2) Jataté, and (3) Tzaconejá, both in the upper Usumacinta basin. On the basis of our results, we propose the recognition of at least three evolutionarily significant units (ESUs) for the species and the urgent implementation of ex situ and in situ conservation and management efforts that consider the genetic background of the species.

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247586
Author(s):  
Christine E. Edwards ◽  
Brooke C. Tessier ◽  
Joel F. Swift ◽  
Burgund Bassüner ◽  
Alexander G. Linan ◽  
...  

Understanding genetic diversity and structure in a rare species is critical for prioritizing both in situ and ex situ conservation efforts. One such rare species is Physaria filiformis (Brassicaceae), a threatened, winter annual plant species. The species has a naturally fragmented distribution, occupying three different soil types spread across four disjunct geographical locations in Missouri and Arkansas. The goals of this study were to understand: (1) whether factors associated with fragmentation and small population size (i.e., inbreeding, genetic drift or genetic bottlenecks) have reduced levels of genetic diversity, (2) how genetic variation is structured and which factors have influenced genetic structure, and (3) how much extant genetic variation of P. filiformis is currently publicly protected and the implications for the development of conservation strategies to protect its genetic diversity. Using 16 microsatellite markers, we genotyped individuals from 20 populations of P. filiformis from across its geographical range and one population of Physaria gracilis for comparison and analyzed genetic diversity and structure. Populations of P. filiformis showed comparable levels of genetic diversity to its congener, except a single population in northwest Arkansas showed evidence of a genetic bottleneck and two populations in the Ouachita Mountains of Arkansas showed lower genetic variation, consistent with genetic drift. Populations showed isolation by distance, indicating that migration is geographically limited, and analyses of genetic structure grouped individuals into seven geographically structured genetic clusters, with geographic location/spatial separation showing a strong influence on genetic structure. At least one population is protected for all genetic clusters except one in north-central Arkansas, which should therefore be prioritized for protection. Populations in the Ouachita Mountains were genetically divergent from the rest of P. filiformis; future morphological analyses are needed to identify whether it merits recognition as a new, extremely rare species.


Author(s):  
Maj Wetjen ◽  
Dirk Hübner ◽  
Ole Seehausen ◽  
Ralf Schulz

Reintroduction, stocking and translocation of freshwater fish are of growing concern given their importance for biodiversity conservation and ecosystem functioning. For successful management and stocking programmes, it is essential to incorporate genetics-based approaches. The nase (Chondrostoma nasus) constituted one of the most common fish species in European rivers. Its highly specialised and migratory nature exposed the species to human pressures, and thus, promoted its decline. Current knowledge of the genetic structure of C. nasus is considerably limited for Europe as a whole and for Germany specifically. To overcome this lack of information we present original data on C. nasus from different tributaries of the River Rhine. We analysed nine microsatellite markers and mtDNA Cytochrome b sequences to assess the distribution of genetic diversity and structure of this species across the study area. With the exception of the Lake Constance/Alpine Rhine population, C. nasus exhibited high gene flow within the Rhine system, and therefore, limited geographical genetic differences between populations where migration is not prevented by human intervention. The present study provides new insights into the levels of genetic variability of C. nasus in the Rhine system, providing useful information for guiding reintroduction and stocking programmes. Population genetic information will improve future preservation and management of this valuable freshwater fish species in Germany and beyond.


2019 ◽  
Vol 12 ◽  
pp. 194008291984950 ◽  
Author(s):  
Yayan Wahyu C. Kusuma ◽  
Siti R. Ariati ◽  
Rosniati A. Risna ◽  
Chika Mitsuyuki ◽  
Yoshihisa Suyama ◽  
...  

Ex situ conservation is an important complementary strategy for in situ to conserve endangered plant species. However, the limited areas designated for ex situ conservation such as in botanic gardens have become a great challenge for conservation practitioners and scientists attempting to optimally conserve the genetic diversity of targeted plant species. Our study aimed to assess genetic diversity and structure of wild seedlings of Vatica bantamensis, an endemic and critically endangered dipterocarp from Java (Indonesia). We also estimated genetic differentiation between the wild seedlings and existing ex situ collection and evaluated the genetic diversity preserved in the ex situ collection. Our analysis, using 730 single-nucleotide polymorphisms loci, showed that wild seedlings exhibited higher genetic diversity than the ex situ collection (nucleotide diversity, µ = 0.26 and 0.16, respectively). Significant genetic differentiation was also detected ( FST = 0.32) between wild seedlings and ex situ collection. Furthermore, we found high kinship within the ex situ collection suggesting low genetic diversity since the founding collection. We also detected three distinct genetic clusters from all samples combined (analysis of molecular variance, ϕ = 0.48, p < .001), with two clusters present in the wild seedlings that were not represented in the ex situ collection. We recommend that supplementary collections from the two newly identified genetic clusters in the wild seedlings should be incorporated to increase genetic diversity in the ex situ collection. Furthermore, our study demonstrated that understanding the population genetics of targeted endangered species provides better results for ex situ conservation strategies.


2016 ◽  
Vol 14 (1) ◽  
Author(s):  
Juan Diego Martínez ◽  
Carlos Daniel Cadena ◽  
Mauricio Torres

Abstract Although temperature has far-reaching effects on fish biology, the thermal tolerance ranges of most freshwater fish species are unknown. This lack of information precludes forecasting responses to climatic change and does not allow for comparative analyses that may inform evolutionary and biogeographic studies. We used the critical thermal methodology to quantify acclimation capacity and thermal tolerance in the Neotropical freshwater species Poecilia caucana . For fish acclimated to 20˚C, 25ºC, and 28ºC, critical thermal minima (CTmin) were 12.52 ± 0.62ºC, 13.41 ± 0.56ºC and 14.24 ± 0.43ºC respectively, and critical thermal maxima (CTmax) were 38.43 ± 0.64ºC, 40.28 ± 0.92ºC and 41.57 ± 0.27ºC, respectively. Both CTmin and CTmax changed with acclimation temperatures, indicating that P. caucana was effectively acclimatable. Relative to values reported for other freshwater fish species, the acclimation capacity of P. caucana for CTmin was low, but it was average for CTmax. The data, together with similar work in other species, can be used in analyses focusing on broad ecological and evolutionary questions.


2018 ◽  
Author(s):  
Boris Leroy ◽  
Murilo S. Dias ◽  
Emilien Giraud ◽  
Bernard Hugueny ◽  
Céline Jézéquel ◽  
...  

AbstractAimTo define the major biogeographical regions and transition zones for freshwater fish species.TaxonStrictly freshwater species of actinopterygian fish (i.e., excluding marine and amphidromous fish families).MethodsWe based our bioregionalisation on a global database of freshwater fish species occurrences in drainage basins, which, after filtering, includes 11 295 species in 2 581 basins. On the basis of this dataset, we generated a bipartite (basin-species) network upon which we applied a hierarchical clustering algorithm (the Map Equation) to detect regions. We tested the robustness of regions with a sensitivity analysis. We identified transition zones between major regions with the participation coefficient, indicating the degree to which a basin has species from multiple regions.ResultsOur bioregionalisation scheme showed two major supercontinental regions (Old World and New World, 50% species of the world and 99.96% endemics each). Nested within these two supercontinental regions lie six major regions (Nearctic, Neotropical, Palearctic, Ethiopian, Sino-Oriental and Australian) with extremely high degrees of endemism (above 96% except for the Palearctic). Transition zones between regions were of limited extent compared to other groups of organisms. We identified numerous subregions with high diversity and endemism in tropical areas (e.g. Neotropical), and a few large subregions with low diversity and endemism at high latitudes (e.g. Palearctic).Main conclusionsOur results suggest that regions of freshwater fish species were shaped by events of vicariance and geodispersal which were similar to other groups, but with freshwater-specific processes of isolation that led to extremely high degrees of endemism (far exceeding endemism rates of other continental vertebrates), specific boundary locations, and limited extents of transition zones. The identified bioregions and transition zones of freshwater fish species reflect the strong isolation of freshwater fish faunas for the past 10 to 20 million years. The extremely high endemism and diversity of freshwater fish fauna raises many questions about the biogeographical consequences of current introductions and extinctions.


Sign in / Sign up

Export Citation Format

Share Document