scholarly journals Characterization of the morphology and complete mitochondrial genomes of Eupteryx minusula and Eupteryx gracilirama (Hemiptera: Cicadellidae: Typhlocybinae) from Karst area, Southwest China

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12501
Author(s):  
Zhouwei Yuan ◽  
Kangning Xiong ◽  
Ni Zhang ◽  
Can Li ◽  
Yuehua Song

Background The hemipteran insect family Cicadellidae (leafhoppers) includes >2,600 valid genera and >22,000 valid species worldwide, including >2,000 species in China. Typhlocybinae, second largest subfamilies of Cicadellidae, is widely distributed in the six major zoogeographic regions of the world, including >4,000 species worldwide and >1,000 species in China. Previously, morphological analysis are often effective to the way of taxonomy, but it did not combine with molecular biology. Therefore, morphology and mitochondrial genomes (mitogenomes) of two leafhopper species, Eupteryx (Eupteryx) minuscula Lindberg, 1929 and Eupteryx (Stacla) gracilirama Hou, Zhang & Huang, 2016 were studied and analyzed. This study analyzed the morphological and molecular characteristics of the two leafhoppers, and showed whether the results of the two identifications were consistent. Methods Based on the method of comparison, mitogenomes and morphology were analyzed to prove the relationship between the two leafhoppers. Results Although two focal species are classified in two different subgenera of the same genus, they still share many morphological features, such as the moderately produced crown fore margin; the milky yellow apical part of scutellum; the pronotum, basal triangles of scutellum, and forewing are dark with several colorless patches on the surface; the light yellow face, without any spots or stripes, and so on. The circular mitogenomes are 16,944 bp long in E. minuscula (GenBank: MN910279) and 17,173 bp long in E. gracilirama (GenBank: MT594485). All of the protein-coding genes are starting with ATN, except for some in mitogenome, which has a single T or TAN as a stop codon. All tRNAs have the typical cloverleaf-shaped structure except for trnS1 (AGN) (E. minuscula) which has a reduced DHU arm. Moreover, these two mitogenomes have trnR with an unpaired base in the acceptor stem. The phylogenetic relationships between E. minuscula and E. gracilirama in respect to related lineages were reconstructed using Maximum likelihood and Maximum parsimony analyses. Discussion The result showed that the tribe Typhlocybini is a sister to the tribes Erythroneurini and Empoascini, and five genera, Bolanusoides, Typhlocyba, Eupteryx, Zyginella and Limassolla are forming a single clade. E. minuscula and E. gracilirama are clustered together, supporting the monophyly of the genus Eupteryx. The above conclusions are consistent with the traditional classification of the subfamily.

2019 ◽  
Author(s):  
Gang Liu ◽  
Lizhi Zhou ◽  
Guanghong Zhao

The phylogenetic relationships between owls and nightjars are rather complex and controversial. To clarify these relationships, we determined the complete mitochondrial genomes of Glaucidium cuculoides, Otus scops, Glaucidium brodiei, Caprimulgus indicus, and Strix leptogrammica, and estimated phylogenetic trees based on the complete mitochondrial genomes and aligned sequences from closely related species that were obtained in GenBank. The complete mitochondrial genomes were 17392, 17317, 17549, 17536, and 16307 bp in length. All mitochondrial genomes contained 13 protein-coding genes, two rRNAs, 22 tRNAs, and a putative control region. All mitochondrial genomes except for that of Strix leptogrammica contained a pseudo-control region. ATG, GTG, and ATA are generally start codons, whereas TAA is the most frequent stop codon. All tRNAs in the new mtDNAs could be folded into canonical cloverleaf secondary structures except for tRNASer (AGY) and tRNALeu (CUN) , which missing the “DHU” arm. The phylogenetic relationships demonstrated that Strigiformes and Caprimulgiformes are independent orders, and Aegothelidae is a family within Caprimulgiformes. The results also revealed that Accipitriformes is an independent order, and Pandionidae and Sagittariidae are independent families. The results also supported that Apodiformes is polyphyletic, and hummingbirds (family Trochilidae) belong to Apodiformes. Piciformes was most distantly related to all other analyzed orders.


2019 ◽  
Vol 47 (20) ◽  
pp. 10543-10552 ◽  
Author(s):  
Alexander Donath ◽  
Frank Jühling ◽  
Marwa Al-Arab ◽  
Stephan H Bernhart ◽  
Franziska Reinhardt ◽  
...  

Abstract With the rapid increase of sequenced metazoan mitochondrial genomes, a detailed manual annotation is becoming more and more infeasible. While it is easy to identify the approximate location of protein-coding genes within mitogenomes, the peculiar processing of mitochondrial transcripts, however, makes the determination of precise gene boundaries a surprisingly difficult problem. We have analyzed the properties of annotated start and stop codon positions in detail, and use the inferred patterns to devise a new method for predicting gene boundaries in de novo annotations. Our method benefits from empirically observed prevalances of start/stop codons and gene lengths, and considers the dependence of these features on variations of genetic codes. Albeit not being perfect, our new approach yields a drastic improvement in the accuracy of gene boundaries and upgrades the mitochondrial genome annotation server MITOS to an even more sophisticated tool for fully automatic annotation of metazoan mitochondrial genomes.


2019 ◽  
Author(s):  
Gang Liu ◽  
Lizhi Zhou ◽  
Guanghong Zhao

The phylogenetic relationships between owls and nightjars are rather complex and controversial. To clarify these relationships, we determined the complete mitochondrial genomes of Glaucidium cuculoides, Otus scops, Glaucidium brodiei, Caprimulgus indicus, and Strix leptogrammica, and estimated phylogenetic trees based on the complete mitochondrial genomes and aligned sequences from closely related species that were obtained in GenBank. The complete mitochondrial genomes were 17392, 17317, 17549, 17536, and 16307 bp in length. All mitochondrial genomes contained 13 protein-coding genes, two rRNAs, 22 tRNAs, and a putative control region. All mitochondrial genomes except for that of Strix leptogrammica contained a pseudo-control region. ATG, GTG, and ATA are generally start codons, whereas TAA is the most frequent stop codon. All tRNAs in the new mtDNAs could be folded into canonical cloverleaf secondary structures except for tRNASer (AGY) and tRNALeu (CUN) , which missing the “DHU” arm. The phylogenetic relationships demonstrated that Strigiformes and Caprimulgiformes are independent orders, and Aegothelidae is a family within Caprimulgiformes. The results also revealed that Accipitriformes is an independent order, and Pandionidae and Sagittariidae are independent families. The results also supported that Apodiformes is polyphyletic, and hummingbirds (family Trochilidae) belong to Apodiformes. Piciformes was most distantly related to all other analyzed orders.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12465
Author(s):  
Nian Gong ◽  
Lin Yang ◽  
Xiangsheng Chen

Here, the complete mitochondrial genomes (mitogenomes) of 12 Caliscelidae species, Augilina tetraina, Augilina triaina, Symplana brevistrata, Symplana lii, Neosymplana vittatum, Pseudosymplanella nigrifasciata, Symplanella brevicephala, Symplanella unipuncta, Augilodes binghami, Cylindratus longicephalus, Caliscelis shandongensis, and Peltonotellus sp., were determined and comparatively analyzed. The genomes varied from 15,424 to 16,746 bp in size, comprising 37 mitochondrial genes and an A+T-rich region. The typical gene content and arrangement were similar to those of most Fulgoroidea species. The nucleotide compositions of the mitogenomes were biased toward A/T. All protein-coding genes (PCGs) started with a canonical ATN or GTG codon and ended with TAN or an incomplete stop codon, single T. Among 13 PCGs in 16 reported Caliscelidae mitogenomes, cox1 and atp8 showed the lowest and highest nucleotide diversity, respectively. All PCGs evolved under purifying selection, with atp8 considered a comparatively fast-evolving gene. Phylogenetic relationships were reconstructed based on 13 PCGs in 16 Caliscelidae species and five outgroups using maximum likelihood and Bayesian inference analyses. All species of Caliscelidae formed a steadily monophyletic group with high support. Peltonotellini was present at the basal position of the phylogenetic tree. Augilini was the sister group to Caliscelini and Peltonotellini.


Author(s):  
Shu-Tong Dai ◽  
Dian-Xing Feng ◽  
Da-Peng Sun

Abstract The mitochondrial genome is frequently used for species identification and phylogenetic studies. In this study, we first sequenced and annotated the complete mitochondrial genomes of two phorid species that are forensically important in buried or enclosed environments: Metopina sagittata (Liu) and Puliciphora borinquenensis (Wheeler). The complete mitochondrial genome sequences of M. sagittata and P. borinquenensis were 15,640 bp with an A+T content of 75.97% and 15,429 bp with an A+T content of 75.38%, respectively. Their circular genomes both contained 13 protein-coding genes (PCGs), 22 transfer RNA genes, 2 ribosomal RNA genes, and 1 control region located between rrnS and trnI which was 808 bp for M. sagittata and 746 bp for P. borinquenensis. All the PCGs of both species started with ATN codons except for cox1 which used TTG codon. In addition to the common stop codon TAA and TAG, the incomplete stop codon T was used in two PCGs (cox1 and nad4) of M. sagittata and five PCGs (cox1, cox2, cox3, nad5, and nad4) of P. borinquenensis. There were 3 and 10 mismatched base pairs in the tRNA secondary structures from M. sagittata and P. borinquenensis, respectively. Both maximum likelihood and Bayesian inference analyses indicated that Platypezidae and Phoridae are sister taxa. M. sagittata is closely related to P. borinquenensis within the subfamily Metopininae. This work enhances the databases of Phoridae genomes and contributes to the further study of species identification and phylogenetics of this family.


Genes ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 563 ◽  
Author(s):  
Hu Li

In this study, the complete mitochondrial genomes (mitogenomes) of two hoverfly species of Korinchia angustiabdomena (Huo, Ren, and Zheng) and Volucella nigricans Coquillett (Diptera: Syrphidae) were determined and analyzed. The circular mitogenomes were 16,473 bp in K. angustiabdomena (GenBank No. MK870078) and 15,724 bp in V. nigricans (GenBank No. MK870079). Two newly sequenced mitogenomes both contained 37 genes, and the gene order was similar with other syrphine species. All the protein-coding genes (PCGs) were started with the standard ATN codons; and most of PCGs were terminated with a TAA stop codon, while ND1 in K. angustiabdomena ended with a TAG codon, and ND5 terminated with truncated T stop codons in both species. The phylogenetic relationship between K. angustiabdomena and V. nigricans with related lineages was reconstructed using Bayesian inference and Maximum-likelihood analyses. The monophyly of each family considered within Muscomorpha was confirmed by the clades in the phylogenetic tree, and superfamily of the Oestroidea (Calliphoridae, Sarcophagidae, and Oestridae) was unexpectedly found to be a paraphyletic group based on our selected data. This mitogenome information for K. angustiabdomena and V. nigricans could facilitate future studies of evolutionarily related insects.


Insects ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 338
Author(s):  
Yan Jiang ◽  
Hao-Xi Li ◽  
Xiao-Fei Yu ◽  
Mao-Fa Yang

The complete mitochondrial genomes of Atkinsoniella grahami and Atkinsoniella xanthonota were sequenced. The results showed that the mitogenomes of these two species are 15,621 and 15,895 bp in length, with A+T contents of 78.6% and 78.4%, respectively. Both mitogenomes contain 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs), and a control region (CR). For all PCGs, a standard start ATN codon (ATT, ATG, or ATA) was found at the initiation site, except for ATP8, for which translation is initiated with a TTG codon. All PCGs terminate with a complete TAA or TAG stop codon, except for COX2, which terminates with an incomplete stop codon T. All tRNAs have the typical cloverleaf secondary structure, except for trnS, which has a reduced dihydrouridine arm. Furthermore, these phylogenetic analyses were reconstructed based on 13 PCGs and two rRNA genes of 73 mitochondrial genome sequences, with both the maximum likelihood (ML) and Bayesian inference (BI) methods. The obtained mitogenome sequences in this study will promote research into the classification, population genetics, and evolution of Cicadellinae insects in the future.


Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 668
Author(s):  
Tinghao Yu ◽  
Yalin Zhang

More studies are using mitochondrial genomes of insects to explore the sequence variability, evolutionary traits, monophyly of groups and phylogenetic relationships. Controversies remain on the classification of the Mileewinae and the phylogenetic relationships between Mileewinae and other subfamilies remain ambiguous. In this study, we present two newly completed mitogenomes of Mileewinae (Mileewa rufivena Cai and Kuoh 1997 and Ujna puerana Yang and Meng 2010) and conduct comparative mitogenomic analyses based on several different factors. These species have quite similar features, including their nucleotide content, codon usage of protein genes and the secondary structure of tRNA. Gene arrangement is identical and conserved, the same as the putative ancestral pattern of insects. All protein-coding genes of U. puerana began with the start codon ATN, while 5 Mileewa species had the abnormal initiation codon TTG in ND5 and ATP8. Moreover, M. rufivena had an intergenic spacer of 17 bp that could not be found in other mileewine species. Phylogenetic analysis based on three datasets (PCG123, PCG12 and AA) with two methods (maximum likelihood and Bayesian inference) recovered the Mileewinae as a monophyletic group with strong support values. All results in our study indicate that Mileewinae has a closer phylogenetic relationship to Typhlocybinae compared to Cicadellinae. Additionally, six species within Mileewini revealed the relationship (U. puerana + (M. ponta + (M. rufivena + M. alara) + (M. albovittata + M. margheritae))) in most of our phylogenetic trees. These results contribute to the study of the taxonomic status and phylogenetic relationships of Mileewinae.


2021 ◽  
Vol 22 (4) ◽  
pp. 1876
Author(s):  
Frida Belinky ◽  
Ishan Ganguly ◽  
Eugenia Poliakov ◽  
Vyacheslav Yurchenko ◽  
Igor B. Rogozin

Nonsense mutations turn a coding (sense) codon into an in-frame stop codon that is assumed to result in a truncated protein product. Thus, nonsense substitutions are the hallmark of pseudogenes and are used to identify them. Here we show that in-frame stop codons within bacterial protein-coding genes are widespread. Their evolutionary conservation suggests that many of them are not pseudogenes, since they maintain dN/dS values (ratios of substitution rates at non-synonymous and synonymous sites) significantly lower than 1 (this is a signature of purifying selection in protein-coding regions). We also found that double substitutions in codons—where an intermediate step is a nonsense substitution—show a higher rate of evolution compared to null models, indicating that a stop codon was introduced and then changed back to sense via positive selection. This further supports the notion that nonsense substitutions in bacteria are relatively common and do not necessarily cause pseudogenization. In-frame stop codons may be an important mechanism of regulation: Such codons are likely to cause a substantial decrease of protein expression levels.


Insects ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 779 ◽  
Author(s):  
Ke-Ke Xu ◽  
Qing-Ping Chen ◽  
Sam Pedro Galilee Ayivi ◽  
Jia-Yin Guan ◽  
Kenneth B. Storey ◽  
...  

Insects of the order Phasmatodea are mainly distributed in the tropics and subtropics and are best known for their remarkable camouflage as plants. In this study, we sequenced three complete mitochondrial genomes from three different families: Orestes guangxiensis, Peruphasma schultei, and Phryganistria guangxiensis. The lengths of the three mitochondrial genomes were 15,896 bp, 16,869 bp, and 17,005 bp, respectively, and the gene composition and structure of the three stick insects were identical to those of the most recent common ancestor of insects. The phylogenetic relationships among stick insects have been chaotic for a long time. In order to discuss the intra- and inter-ordinal relationship of Phasmatodea, we used the 13 protein-coding genes (PCGs) of 85 species for maximum likelihood (ML) and Bayesian inference (BI) analyses. Results showed that the internal topological structure of Phasmatodea had a few differences in both ML and BI trees and long-branch attraction (LBA) appeared between Embioptera and Zoraptera, which led to a non-monophyletic Phasmatodea. Consequently, after removal of the Embioptera and Zoraptera species, we re-performed ML and BI analyses with the remaining 81 species, which showed identical topology except for the position of Tectarchus ovobessus (Phasmatodea). We recovered the monophyly of Phasmatodea and the sister-group relationship between Phasmatodea and Mantophasmatodea. Our analyses also recovered the monophyly of Heteropterygidae and the paraphyly of Diapheromeridae, Phasmatidae, Lonchodidae, Lonchodinae, and Clitumninae. In this study, Peruphasma schultei (Pseudophasmatidae), Phraortes sp. YW-2014 (Lonchodidae), and species of Diapheromeridae clustered into the clade of Phasmatidae. Within Heteropterygidae, O. guangxiensis was the sister clade to O. mouhotii belonging to Dataminae, and the relationship of (Heteropteryginae + (Dataminae + Obriminae)) was recovered.


Sign in / Sign up

Export Citation Format

Share Document