scholarly journals Growing coral larger and faster: micro-colony-fusion as a strategy for accelerating coral cover

PeerJ ◽  
2015 ◽  
Vol 3 ◽  
pp. e1313 ◽  
Author(s):  
Zac H. Forsman ◽  
Christopher A. Page ◽  
Robert J. Toonen ◽  
David Vaughan

Fusion is an important life history strategy for clonal organisms to increase access to shared resources, to compete for space, and to recover from disturbance. For reef building corals, fragmentation and colony fusion are key components of resilience to disturbance. Observations of small fragments spreading tissue and fusing over artificial substrates prompted experiments aimed at further characterizing Atlantic and Pacific corals under various conditions. Small (∼1–3 cm2) fragments from the same colony spaced regularly over ceramic tiles resulted in spreading at rapid rates (e.g., tens of square centimeters per month) followed by isogenic fusion. Using this strategy, we demonstrate growth, in terms of area encrusted and covered by living tissue, ofOrbicella faveolata,Pseudodiploria clivosa, andPorites lobataas high as 63, 48, and 23 cm2per month respectively. We found a relationship between starting and ending size of fragments, with larger fragments growing at a faster rate.Porites lobatashowed significant tank effects on rates of tissue spreading indicating sensitivity to biotic and abiotic factors. The tendency of small coral fragments to encrust and fuse over a variety of surfaces can be exploited for a variety of applications such as coral cultivation, assays for coral growth, and reef restoration.

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9978 ◽  
Author(s):  
Gammon Koval ◽  
Nicolas Rivas ◽  
Martine D’Alessandro ◽  
Dalton Hesley ◽  
Rolando Santos ◽  
...  

As coral reefs continue to decline globally, coral restoration practitioners have explored various approaches to return coral cover and diversity to decimated reefs. While branching coral species have long been the focus of restoration efforts, the recent development of the microfragmentation coral propagation technique has made it possible to incorporate massive coral species into restoration efforts. Microfragmentation (i.e., the process of cutting large donor colonies into small fragments that grow fast) has yielded promising early results. Still, best practices for outplanting fragmented corals of massive morphologies are continuing to be developed and modified to maximize survivorship. Here, we compared outplant success among four species of massive corals (Orbicella faveolata, Montastraea cavernosa, Pseudodiploria clivosa, and P. strigosa) in Southeast Florida, US. Within the first week following coral deployment, predation impacts by fish on the small (<5 cm2) outplanted colonies resulted in both the complete removal of colonies and significant tissue damage, as evidenced by bite marks. In our study, 8–27% of fragments from four species were removed by fish within one week, with removal rates slowing down over time. Of the corals that remained after one week, over 9% showed signs of fish predation. Our findings showed that predation by corallivorous fish taxa like butterflyfishes (Chaetodontidae), parrotfishes (Scaridae), and damselfishes (Pomacentridae) is a major threat to coral outplants, and that susceptibility varied significantly among coral species and outplanting method. Moreover, we identify factors that reduce predation impacts such as: (1) using cement instead of glue to attach corals, (2) elevating fragments off the substrate, and (3) limiting the amount of skeleton exposed at the time of outplanting. These strategies are essential to maximizing the efficiency of outplanting techniques and enhancing the impact of reef restoration.


2021 ◽  
Vol 657 ◽  
pp. 123-133
Author(s):  
JR Hancock ◽  
AR Barrows ◽  
TC Roome ◽  
AS Huffmyer ◽  
SB Matsuda ◽  
...  

Reef restoration via direct outplanting of sexually propagated juvenile corals is a key strategy in preserving coral reef ecosystem function in the face of global and local stressors (e.g. ocean warming). To advance our capacity to scale and maximize the efficiency of restoration initiatives, we examined how abiotic conditions (i.e. larval rearing temperature, substrate condition, light intensity, and flow rate) interact to enhance post-settlement survival and growth of sexually propagated juvenile Montipora capitata. Larvae were reared at 3 temperatures (high: 28.9°C, ambient: 27.2°C, low: 24.5°C) for 72 h during larval development, and were subsequently settled on aragonite plugs conditioned in seawater (1 or 10 wk) and raised in different light and flow regimes. These juvenile corals underwent a natural bleaching event in Kāne‘ohe Bay, O‘ahu, Hawai‘i (USA), in summer 2019, allowing us to opportunistically measure bleaching response in addition to survivorship and growth. This study demonstrates how leveraging light and flow can increase the survivorship and growth of juvenile M. capitata. In contrast, larval preconditioning and substrate conditioning had little overall effect on survivorship, growth, or bleaching response. Importantly, there was no optimal combination of abiotic conditions that maximized survival and growth in addition to bleaching tolerances. This study highlights the ability to tailor sexual reproduction for specific restoration goals by addressing knowledge gaps and incorporating practices that could improve resilience in propagated stocks.


2021 ◽  
Author(s):  
Ana M. Palacio-Castro ◽  
Caroline E. Dennison ◽  
Stephanie M. Rosales ◽  
Andrew C. Baker

Coral cover is declining worldwide due to multiple interacting threats. We compared the effects of elevated nutrients and temperature on three Caribbean corals: Acropora cervicornis, Orbicella faveolata, and Siderastrea siderea. Colonies hosting different algal types were exposed to either ambient nutrients (A), elevated NH4 (N), or elevated NH4 + PO4 (N+P) at control temperatures (26 °C) for > 2 months, followed by a 3-week thermal challenge (31.5 °C). A. cervicornis hosted Symbiodinium (S. fitti) and was highly susceptible to the combination of elevated nutrients and temperature. During heat stress, A. cervicornis pre-exposed to elevated nutrients experienced 84%-100% mortality and photochemical efficiency (Fv/Fm) declines of 41-50%. In comparison, no mortality and lower Fv/Fm declines (11-20%) occurred in A. cervicornis that were heat-stressed but not pre-exposed to nutrients. O. faveolata and S. siderea response to heat stress was determined by their algal symbiont community and was not affected by nutrients. O. faveolata predominantly hosted Durusdinium trenchii or Breviolum, but only corals hosting Breviolum were susceptible to heat, experiencing 100% mortality, regardless of nutrient treatment. S. siderea colonies predominantly hosted Cladocopium C1 (C. goreaui), Cladocopium C3, D. trenchii, or variable proportions of Cladocopium C1 and D. trenchii. This species was resilient to elevated nutrients and temperature, with no significant mortality in any of the treatments. However, during heat stress, S. siderea hosting Cladocopium C3 suffered higher reductions in Fv/Fm (41-56%) compared to S. siderea hosting Cladocopium C1 and D. trenchii (17-26% and 10-16%, respectively). These differences in holobiont susceptibility to elevated nutrients and heat may help explain historical declines in A. cervicornis starting decades earlier than other Caribbean corals. Our results suggest that tackling only warming temperatures may be insufficient to ensure the continued persistence of Caribbean corals, especially A. cervicornis. Reducing nutrient inputs to reefs may also be necessary for these iconic coral species to survive.


2021 ◽  
Vol 8 ◽  
Author(s):  
Johanna Calle-Triviño ◽  
Aarón Israel Muñiz-Castillo ◽  
Camilo Cortés-Useche ◽  
Megan Morikawa ◽  
Rita Sellares-Blasco ◽  
...  

Coral restoration has been recognized as an increasingly important tool for coral conservation in recent years. In the Caribbean, the endangered staghorn coral, Acropora cervicornis has been studied for restoration for over two decades with most studies focusing on evaluating simple metrics of success such as colony growth and survivorship in both nurseries and outplanted sites. However, for reef restoration to aid in the recovery of ecological function in outplanted sites, there is a need to measure the functional ecology of the impact of outplanting. Here, we present and identify positive ecological processes and ecological functions (such as increased fish biomass, coral cover, and increased in structural complexity) relative to active reef restoration. In the Southeastern Reefs Marine Sanctuary in the Dominican Republic, we monitored the percentage of benthic cover and fish biomass alongside active reef restoration over the period of 12 months in four zones. Subsequently, we developed multidimensional analyses in conjunction with generalized linear models (GLM) and linear models. Our results show there is a remarkable spatial and temporal differentiation favoring greater ecological function in restored areas. We observed the most noticeable patterns of change in the benthos and coral species composition. We found a positive relationship between amounts of outplanted colonies with the total fish biomass for the three outplanted sites. We highlight that Scarus iseri, a parrotfish critical for grazing maintenance, was the species with the greatest benefit. Our results provide evidence of the functional importance of Acropora cervicornis in coral reef active restoration efforts.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3346 ◽  
Author(s):  
Ku’ulei S. Rodgers ◽  
Koi Lorance ◽  
Angela Richards Donà ◽  
Yuko Stender ◽  
Claire Lager ◽  
...  

Coral reef restoration and management techniques are in ever-increasing demand due to the global decline of coral reefs in the last several decades. Coral relocation has been established as an appropriate restoration technique in select cases, particularly where corals are scheduled for destruction. However, continued long-term monitoring of recovery of transplanted corals is seldom sustained. Removal of coral from a navigation channel and relocation to a similar nearby dredged site occurred in 2005. Coral recovery at the donor site and changes in fish populations at the receiving site were tracked periodically over the following decade. Coral regrowth at the donor site was rapid until a recent bleaching event reduced coral cover by more than half. The transplant of mature colonies increased spatial complexity at the receiving site, immediately increasing fish biomass, abundance, and species that was maintained throughout subsequent surveys. Our research indicates that unlike the majority of historical accounts of coral relocation in the Pacific, corals transplanted into wave-protected areas with similar conditions as the original site can have high survival rates. Data on long-term monitoring of coral transplants in diverse environments is central in developing management and mitigation strategies.


2017 ◽  
Author(s):  
Katherine A Allen ◽  
John F Bruno ◽  
Fiona Chong ◽  
Damian Clancy ◽  
Tim R McClanahan ◽  
...  

Coral reefs are dynamic systems whose composition is highly influenced by unpredictable biotic and abiotic factors. Understanding the spatial scale at which long-term predictions of reef composition can be made will be crucial for guiding conservation efforts. Using a 22-year time series of benthic composition data from 20 reefs on the Kenyan and Tanzanian coast, we developed Bayesian vector autoregressive state-space models for reef dynamics, incorporating among-site variability, and quantified their long-term behaviour. We estimated that if there were no among-site variability, the total long-term variability would be approximately one third of its current value. Thus, our results showed that among-site variability contributes more to long-term variability in reef composition than does temporal variability. Individual sites were more predictable than previously thought, and predictions based on current snapshots are informative about long-term properties. Our approach allowed us to identify a subset of possible climate refugia sites with high conservation value, where the long-term probability of coral cover \(\leq\) 0.1 was very low. Analytical results show that this probability is most strongly influenced by among-site variability and by interactions among benthic components within sites. These findings suggest that conservation initiatives might be successful at the site scale as well as the regional scale.


2018 ◽  
Vol 15 (20) ◽  
pp. 6277-6296 ◽  
Author(s):  
Anna Roik ◽  
Till Röthig ◽  
Claudia Pogoreutz ◽  
Vincent Saderne ◽  
Christian R. Voolstra

Abstract. The structural framework provided by corals is crucial for reef ecosystem function and services, but high seawater temperatures can be detrimental to the calcification capacity of reef-building organisms. The Red Sea is very warm, but total alkalinity (TA) is naturally high and beneficial for reef accretion. To date, we know little about how such detrimental and beneficial abiotic factors affect each other and the balance between calcification and erosion on Red Sea coral reefs, i.e., overall reef growth, in this unique ocean basin. To provide estimates of present-day reef growth dynamics in the central Red Sea, we measured two metrics of reef growth, i.e., in situ net-accretion/-erosion rates (Gnet) determined by deployment of limestone blocks and ecosystem-scale carbonate budgets (Gbudget), along a cross-shelf gradient (25 km, encompassing nearshore, midshore, and offshore reefs). Along this gradient, we assessed multiple abiotic (i.e., temperature, salinity, diurnal pH fluctuation, inorganic nutrients, and TA) and biotic (i.e., calcifier and epilithic bioeroder communities) variables. Both reef growth metrics revealed similar patterns from nearshore to offshore: net-erosive, neutral, and net-accretion states. The average cross-shelf Gbudget was 0.66 kg CaCO3 m−2 yr−1, with the highest budget of 2.44 kg CaCO3 m−2 yr−1 measured in the offshore reef. These data are comparable to the contemporary Gbudgets from the western Atlantic and Indian oceans, but lie well below “optimal reef production” (5–10 kg CaCO3 m−2 yr−1) and below maxima recently recorded in remote high coral cover reef sites. However, the erosive forces observed in the Red Sea nearshore reef contributed less than observed elsewhere. A higher TA accompanied reef growth across the shelf gradient, whereas stronger diurnal pH fluctuations were associated with negative carbonate budgets. Noteworthy for this oligotrophic region was the positive effect of phosphate, which is a central micronutrient for reef building corals. While parrotfish contributed substantially to bioerosion, our dataset also highlights coralline algae as important local reef builders. Altogether, our study establishes a baseline for reef growth in the central Red Sea that should be useful in assessing trajectories of reef growth capacity under current and future ocean scenarios.


2020 ◽  
Vol 639 ◽  
pp. 127-136 ◽  
Author(s):  
JW Reustle ◽  
DL Smee

Abiotic factors can influence the distribution of organisms through physiological tolerance limits and by affecting their sensory performance in critical life history functions such as foraging or predator avoidance. In estuaries, salinity and turbidity directly influence the distribution of organisms but the indirect, synergistic effects of these factors on trophic interactions and community structure remain obscure. We investigated the effects of salinity and turbidity on oyster reef communities by comparing oyster reef community structure in low vs. high turbidity in consecutive years that varied considerably in rainfall and ambient salinity levels. Turbidity had significant effects in both 2016 and 2017 by interfering with fish foraging ability and consumption. In turbid sites, fish predation decreased by ~21%, crab mesopredators were 11% larger and nearly 5 times more abundant due to reduced top-down control by fish, and oyster reef biodiversity was 12% lower. In 2016, oysters were 350% less abundant in sites with abundant crab predators. However, in 2017, salinity increased, facilitating a new predator (oyster drills Stramonita haemastoma) to emerge onto reefs, and oysters were 7 times less abundant in sites with oyster drills despite having fewer crab predators. Thus, salinity and turbidity can indirectly affect food webs by facilitating different predators and influencing their sensory performance. Turbidity had significant effects on estuarine food webs regardless of salinity levels, and like salinity, turbidity should also be considered in oyster reef restoration and management of estuarine ecosystems.


2020 ◽  
Author(s):  
Olivia M. Williamson ◽  
Corinne E. Allen ◽  
Dana E. Williams ◽  
Matthew W. Johnson ◽  
Margaret W. Miller ◽  
...  

AbstractIntervention strategies to enhance coral resilience include manipulating the association between corals and their algal endosymbionts. While hosting thermotolerant Durusdinium trenchii can increase bleaching thresholds in adults, its effects remain largely unknown during the early life stages of Caribbean corals. Here, we tested if Orbicella faveolata recruits could establish symbiosis with D. trenchii supplied by nearby “donor” colonies and examined the resulting ecological trade-offs to evaluate early Symbiodiniaceae manipulation as a scalable tool for reef restoration. We exposed aposymbiotic recruits to 29°C or 31°C and to fragments of either Montastraea cavernosa (containing Cladocopium) or Siderastrea siderea (containing D. trenchii). After 60 days, recruits reared with D. trenchii donors hosted nearly three times more D. trenchii than those with Cladocopium donors, suggesting that recruits can acquire Symbiodiniaceae from nearby corals of different species. Temperature did not affect D. trenchii uptake. Next, donor colonies were removed and surviving recruits were maintained for three months at ambient temperatures, after which a subset was exposed to a 60-day heat stress trial. Recruits previously reared at 31°C survived twice as long at 34°C as those reared at 29°C, suggesting that pre-exposure to heat can prime recruits to withstand future thermal stress. In addition, recruits hosting primarily D. trenchii survived twice as long at 34°C as those hosting little or no D. trenchii. However, the proportion of D. trenchii hosted was negatively correlated with polyp size and symbiont density, indicating a trade-off between growth (of both host and symbiont) and heat tolerance. These findings suggest that, while donor colonies may be effective sources for seeding coral recruits with thermotolerant symbionts, practitioners will need to balance the likely benefits and costs of these approaches when designing restoration strategies.


Sign in / Sign up

Export Citation Format

Share Document