scholarly journals Seasonally distinct taxonomic and functional shifts in macroinvertebrate communities following dam removal

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3189 ◽  
Author(s):  
S. Mažeika P. Sullivan ◽  
David W.P. Manning

Dam removal is an increasingly popular restoration tool, but our understanding of ecological responses to dam removal over time is still in the early stages. We quantified seasonal benthic macroinvertebrate density, taxonomic composition, and functional traits for three years after lowhead dam removal in three reaches of the Olentangy River (Ohio, USA): two upstream of former dam (one restored, one unrestored), and one downstream of former dam. Macroinvertebrate community density, generic richness, and Shannon–Wiener diversity decreased between ∼9 and ∼15 months after dam removal; all three variables consistently increased thereafter. These threshold responses were dependent on reach location: density and richness increased ∼15 months after removal in upstream reaches versus ∼19 months downstream of the former dam. Initial macroinvertebrate density declines were likely related to seasonality or life-history characteristics, but density increased up to 2.27× from year to year in three out of four seasons (late autumn, early spring, summer) across all reaches. Macroinvertebrate community composition was similar among the three reaches, but differed seasonally based on non-metric multidimensional scaling (NMDS) and analysis of similarity (ANOSIM). Seasonal differences among communities tended to decrease after dam removal. We detected community-wide shifts in functional traits such as multivoltinism, depositional habitat use, burrowing, and collector-gatherer feeding mode. We observed that these traits were expressed most strongly with Chironomidae, which was the most abundant family. Our results suggest that seasonal environmental conditions can play a role in the response and recovery of macroinvertebrate communities—often used to monitor ecosystem condition—following dam removal. In particular, macroinvertebrate density and diversity can show recovery after dam removal, especially in seasons when macroinvertebrate density is typically lowest, with concomitant changes to functional trait abundance. Thus, we recommend scientists and managers consider responses to dam removal throughout the year. Further, similar density, generic richness, and functional traits among reaches suggest that channel restoration after dam removal may initially have equivocal effects on invertebrate communities.

2021 ◽  
Vol 9 (4) ◽  
pp. 766
Author(s):  
Christopher J. Ellis ◽  
Johan Asplund ◽  
Renato Benesperi ◽  
Cristina Branquinho ◽  
Luca Di Nuzzo ◽  
...  

Community ecology has experienced a major transition, from a focus on patterns in taxonomic composition, to revealing the processes underlying community assembly through the analysis of species functional traits. The power of the functional trait approach is its generality, predictive capacity such as with respect to environmental change, and, through linkage of response and effect traits, the synthesis of community assembly with ecosystem function and services. Lichens are a potentially rich source of information about how traits govern community structure and function, thereby creating opportunity to better integrate lichens into ‘mainstream’ ecological studies, while lichen ecology and conservation can also benefit from using the trait approach as an investigative tool. This paper brings together a range of author perspectives to review the use of traits in lichenology, particularly with respect to European ecosystems from the Mediterranean to the Arctic-Alpine. It emphasizes the types of traits that lichenologists have used in their studies, both response and effect, the bundling of traits towards the evolution of life-history strategies, and the critical importance of scale (both spatial and temporal) in functional trait ecology.


2019 ◽  
Vol 116 (29) ◽  
pp. 14645-14650 ◽  
Author(s):  
Brianna R. Beechler ◽  
Kate S. Boersma ◽  
Peter E. Buss ◽  
Courtney A. C. Coon ◽  
Erin E. Gorsich ◽  
...  

Novel parasites can have wide-ranging impacts, not only on host populations, but also on the resident parasite community. Historically, impacts of novel parasites have been assessed by examining pairwise interactions between parasite species. However, parasite communities are complex networks of interacting species. Here we used multivariate taxonomic and trait-based approaches to determine how parasite community composition changed when African buffalo (Syncerus caffer) acquired an emerging disease, bovine tuberculosis (BTB). Both taxonomic and functional parasite richness increased significantly in animals that acquired BTB than in those that did not. Thus, the presence of BTB seems to catalyze extraordinary shifts in community composition. There were no differences in overall parasite taxonomic composition between infected and uninfected individuals, however. The trait-based analysis revealed an increase in direct-transmitted, quickly replicating parasites following BTB infection. This study demonstrates that trait-based approaches provide insight into parasite community dynamics in the context of emerging infections.


2021 ◽  
Vol 12 ◽  
Author(s):  
Caishuang Huang ◽  
Yue Xu ◽  
Runguo Zang

Understanding how environmental change alters the composition of plant assemblages is a major challenge in the face of global climate change. Researches accounting for site-specific trait values within forest communities help bridge plant economics theory and functional biogeography to better evaluate and predict relationships between environment and ecosystem functioning. Here, by measuring six functional traits (specific leaf area, leaf dry matter content, leaf nitrogen, and phosphorus concentration, leaf nitrogen/phosphorus, wood density) for 292 woody plant species (48,680 individuals) from 250 established permanent forest dynamics plots in five locations across the subtropical evergreen broadleaved forests (SEBLF) in China, we quantified functional compositions of communities by calculating four trait moments, i.e., community-weighted mean, variance, skewness, and kurtosis. The geographical (latitudinal, longitudinal, and elevational) patterns of functional trait moments and their environmental drivers were examined. Results showed that functional trait moments shifted significantly along the geographical gradients, and trait moments varied in different ways across different gradients. Plants generally showed coordinated trait shifts toward more conservative growth strategies (lower specific leaf area, leaf N and P concentration while higher leaf nitrogen/phosphorus and wood density) along increasing latitude and longitude. However, trends opposite to the latitudinal and longitudinal patterns appeared in trait mean values along elevation. The three sets of environmental variables (climate, soil and topography) explained 35.0–69.0%, 21.0–56.0%, 14.0–31.0%, and 16.0–30.0% of the variations in mean, variance, skewness, and kurtosis across the six functional traits, respectively. Patterns of shifts in functional trait moments along geographical gradients in the subtropical region were mainly determined by the joint effects of climatic and edaphic conditions. Climate regimes, especially climate variability, were the strongest driving force, followed by soil nutrients, while topography played the least role. Moreover, the relationship of variance, skewness and kurtosis with climate and their geographical patterns suggested that rare phenotypes at edges of trait space were selected in harsher environments. Our study suggested that environmental filtering (especially climate variability) was the dominant process of functional assembly for forest communities in the subtropical region along geographical gradients.


2014 ◽  
Vol 328 ◽  
pp. 1-9 ◽  
Author(s):  
Matthew B. Russell ◽  
Christopher W. Woodall ◽  
Anthony W. D’Amato ◽  
Grant M. Domke ◽  
Sassan S. Saatchi

2021 ◽  
Author(s):  
Carlos Aguilar-Trigueros ◽  
Mark Fricker ◽  
Matthias Rillig

<p>Fungal mycelia consist of an interconnected network of filamentous hyphae and represent the dominant phase of the lifecycle in all major fungal phyla, from basal to more recent clades. Indeed, the ecological success of fungi on land is partly due to such filamentous network growth. Nevertheless, fungal ecologists rarely use network features as functional traits. Given the widespread occurrence of this body type, we hypothesized that interspecific variation in network features may reflect both phylogenetic affiliation and distinct ecological strategies among species. We show first that there is high interspecific variation in network parameters of fungi, which partly correlates with taxonomy; and second that network parameters, related to predicted-mycelial transport mechanisms during the exploration phase, reveal the trait space in mycelium architecture across species.  This space predicts a continuum of ecological strategies along two extremes: from highly connected mycelia with high resilience to damage but limited transport efficiency, to poorly connected mycelia with low resilience but high transport efficiency. We argue that mycelial networks are potentially a rich source of information to inform functional trait analysis in fungi, but we also note the challenges in establishing common principles and processing pipelines that are required to facilitate widespread use of network properties as functional traits in fungal ecology.</p>


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 457
Author(s):  
Qidong Lin ◽  
Jinxi Song ◽  
Carlo Gualtieri ◽  
Dandong Cheng ◽  
Ping Su ◽  
...  

The effect of hyporheic exchange on macroinvertebrates is a significant topic in ecohydraulics. A field study was conducted during May and June 2017 to investigate the impacts of magnitude and patterns of hyporheic exchange on the sediment macroinvertebrate community in the Weihe River basin. The results demonstrate that upwelling flows cause resuspension of riverbed sediment, increasing the proportion of swimmer groups (such as Baetidae) in the macroinvertebrate community. However, large resuspension of river bed sediment results in a reduced abundance of macroinvertebrates. By controlling the transport processes of dissolved oxygen (DO), dissolved organic carbon (DOC), nutrients, temperature, and different patterns of hyporheic exchange strongly influence the structure of macroinvertebrate communities. Downwelling is more likely to produce rich invertebrate communities than upwelling. The magnitude for the hyporheic flux of 150–200 mm/d was optimal for the macroinvertebrate community in the Weihe River Basin. Above or below this rate results in a decline in community abundance and diversity. We suggest that research is conducted to better understand the effects of hyporheic exchange across bedforms on macroinvertebrate communities. The study supports any activities to preserve the ecological functions and health of rivers dominated by fine-grained sediments.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Tatenda Dalu ◽  
Rivoningo Chauke

AbstractThe Vhembe Biosphere Reserve, South Africa, contains many wetlands that serve as wildlife habitats and provide vital ecosystem services. Some of the wetlands are continuously being degraded or destroyed by anthropogenic activities causing them to disappear at an alarming rate. Benthic macroinvertebrates are known as good water quality bioindicators and are used to assess aquatic ecosystem health. The current study investigated habitat quality using macroinvertebrate community structure and other biotic variables (i.e. phytoplankton, macrophytes) in relation to environmental variables in the Sambandou wetlands using canonical correspondence analysis (CCA). A total of fifteen macroinvertebrate families were identified over two seasons. The CCA highlighted seven variables, i.e. pH, phosphate concentration, temperature, ammonium, macrophyte cover, conductivity and water depth, which were significant in structuring macroinvertebrate community. Picophytoplankton and microphytoplankton concentrations decreased from winter to summer, whereas nanophytoplankton concentration increased from winter to summer. Thus, the dominance of small-sized phytoplankton indicated nutrient limitation and decreased productivity, whereas winter sites 2 and 3 were dominated by large-celled phytoplankton, highlighting increased productivity. Winter sites were mostly negatively associated with CCA axis 1 and were characterised by high temperature, phosphate and ammonium concentrations, macrophyte cover, pH and conductivity. Summer sites were positively associated with axis 1, being characterised by high water depth and pH levels. The results obtained highlighted that agricultural activities such as cattle grazing and crop farming and sand mining/poaching had a negative effect on macroinvertebrate community structure.


2019 ◽  
Vol 41 (1) ◽  
pp. 83
Author(s):  
Na Zhao ◽  
Xinqing Shao ◽  
Chao Chen ◽  
Jiangwen Fan ◽  
Kun Wang

Plant biomass is the most fundamental component of ecosystems. The spatial stability of plant biomass is important, and the mechanisms regulating plant biomass spatial variability in variable environments are a central focus of ecology. However, they have rarely been explored. We conducted an experiment to test how diversity and functional traits affected variation in biomass and community response to nutrient availability in three plant communities: natural; forb, legume, and bunchgrass; and rhizomatous grass. We found that biomass stability rarely changed with increasing taxonomic species richness and functional group richness but declined with increasing Shannon–Weiner indices (the combination of richness and evenness) and functional trait diversity. However, differences in plant species composition generated different responses in both the amount and spatial variation of biomass following nutrient addition. Because rhizomatous grasses are weakly competitive in nutrient-poor conditions, interaction between resource-acquisitive (grass) and stress-tolerant (forb) species in the natural community conferred the greatest overall stability. The rapid nutrient acquisition ability of the rhizomatous grass Leymus chinensis was stimulated in nutrient-abundant conditions. The functional traits of this dominant species overrode the diversity interaction effects of the natural and forb, legume, and bunchgrass communities. This ultimately resulted in the rhizomatous grass community being the most stable. Community stability was strongly determined by a few key species, particularly rhizomatous grasses, rather than by the average response of all species, thereby supporting the mass ratio hypothesis. Our results indicated that rhizomatous grasses could provide vegetative productivity to reduce soil loss and prevent degradation of L. chinensis-dominant grassland. Thus, protecting specific species is critical for maintaining rangeland ecosystem functions. Moreover, the conservation importance of grasses, non-leguminous forbs, legumes, or even rare species could not be ignored. Maintaining stability mechanisms in natural grasslands is complex, and therefore, further studies need to focus on finding a unified mechanism that can regulate appreciable biomass variation under shifting environmental conditions.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1733
Author(s):  
Livia Paleari ◽  
Fosco M. Vesely ◽  
Riccardo A. Ravasi ◽  
Ermes Movedi ◽  
Sofia Tartarini ◽  
...  

Cultivar recommendation is a key factor in cropping system management. Classical approaches based on comparative multi-environmental trials can hardly explore the agro-climatic and management heterogeneity farmers may have to face. Moreover, they struggle to keep up with the number of genotypes commercially released each year. We propose a new approach based on the integration of in silico ideotyping and functional trait profiling, with the common bean (Phaseoulus vulgaris L.) in Northern Italy as a case study. Statistical distributions for six functional traits (light extinction coefficient, radiation use efficiency, thermal time to first pod and maturity, seed weight, plant height) were derived for 24 bean varieties. The analysis of soil, climate and management in the study area led us to define 21 homogeneous contexts, for which ideotypes were identified using the crop model STICS (Simulateur mulTIdisciplinaire pour les Cultures Standard), the E-FAST (Extended Fourier Amplitude Sensitivity Test) sensitivity analysis method, and the distributions of functional traits. For each context, the 24 cultivars were ranked according to the similarity (weighted Euclidean distance) with the ideotype. Context-specific ideotypes mainly differed for phenological adaptation to specific combinations of climate and management (sowing time) factors, and this reflected in the cultivar recommendation for the different contexts. Feedbacks from bean technicians in the study area confirmed the reliability of the results and, in turn, of the proposed methodology.


Sign in / Sign up

Export Citation Format

Share Document