scholarly journals Metal-binding polymorphism in late embryogenesis abundant protein AtLEA4-5, an intrinsically disordered protein

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4930 ◽  
Author(s):  
Leidys French-Pacheco ◽  
Cesar L. Cuevas-Velazquez ◽  
Lina Rivillas-Acevedo ◽  
Alejandra A. Covarrubias ◽  
Carlos Amero

Late embryogenesis abundant (LEA) proteins accumulate in plants during adverse conditions and their main attributed function is to confer tolerance to stress. One of the deleterious effects of the adverse environment is the accumulation of metal ions to levels that generate reactive oxygen species, compromising the survival of cells. AtLEA4-5, a member of group 4 of LEAs in Arabidopsis, is an intrinsically disordered protein. It has been shown that their N-terminal region is able to undergo transitions to partially folded states and prevent the inactivation of enzymes. We have characterized metal ion binding to AtLEA4-5 by circular dichroism, electronic absorbance spectroscopy (UV–vis), electron paramagnetic resonance, dynamic light scattering, and isothermal titration calorimetry. The data shows that AtLEA4-5 contains a single binding site for Ni(II), while Zn(II) and Cu(II) have multiple binding sites and promote oligomerization. The Cu(II) interacts preferentially with histidine residues mostly located in the C-terminal region with moderate affinity and different coordination modes. These results and the lack of a stable secondary structure formation indicate that an ensemble of conformations remains accessible to the metal for binding, suggesting the formation of a fuzzy complex. Our results support the multifunctionality of LEA proteins and suggest that the C-terminal region of AtLEA4-5 could be responsible for antioxidant activity, scavenging metal ions under stress conditions while the N-terminal could function as a chaperone.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rani Moons ◽  
Albert Konijnenberg ◽  
Carl Mensch ◽  
Roos Van Elzen ◽  
Christian Johannessen ◽  
...  

Abstract α-Synuclein is an intrinsically disordered protein that can self-aggregate and plays a major role in Parkinson’s disease (PD). Elevated levels of certain metal ions are found in protein aggregates in neurons of people suffering from PD, and environmental exposure has also been linked with neurodegeneration. Importantly, cellular interactions with metal ions, particularly Ca2+, have recently been reported as key for α-synuclein’s physiological function at the pre-synapse. Here we study effects of metal ion interaction with α-synuclein at the molecular level, observing changes in the conformational behaviour of monomers, with a possible link to aggregation pathways and toxicity. Using native nano-electrospray ionisation ion mobility-mass spectrometry (nESI-IM-MS), we characterize the heterogeneous interactions of alkali, alkaline earth, transition and other metal ions and their global structural effects on α-synuclein. Different binding stoichiometries found upon titration with metal ions correlate with their specific binding affinity and capacity. Subtle conformational effects seen for singly charged metals differ profoundly from binding of multiply charged ions, often leading to overall compaction of the protein depending on the preferred binding sites. This study illustrates specific effects of metal coordination, and the associated electrostatic charge patterns, on the complex structural space of the intrinsically disordered protein α-synuclein.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaoli Tang ◽  
Hongyan Wang ◽  
Liye Chu ◽  
Hongbo Shao

The LEA proteins are a kind of hydrophilic proteins, playing main functions in desiccation tolerance. However, their importance as a kind of stress proteins in abiotic stress is being clarified little by little. In this study we isolated, cloned, and identified the firstKvLEAgene inKosteletzkya virginica. Bioinformatic analysis showed that the protein encoded by this gene had common properties of LEA proteins and the multiple sequences alignment and phylogenetic analysis further showed that this protein had high homology with twoArabidopsisLEA proteins. Gene expression analysis revealed that this gene had a higher expression in root and it was induced obviously by salt stress. Moreover, the transcripts ofKvLEAwere also induced by other abiotic stresses including drought, high temperature, chilling, and ABA treatment. Among these abiotic stresses, ABA treatment brought about the biggest changes to this gene. Collectively, our research discovered a novel LEA gene and uncovered its involvement in multiabiotic stresses inK. virginica. This research not only enriched studies on LEA gene in plant but also would accelerate more studies onK. virginicain the future.


Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 814
Author(s):  
Lynnette M. A. Dirk ◽  
Caser Ghaafar Abdel ◽  
Imran Ahmad ◽  
Izabel Costa Silva Neta ◽  
Cristiane Carvalho Pereira ◽  
...  

The intrinsically disordered proteins belonging to the LATE EMBRYOGENESIS ABUNDANT protein (LEAP) family have been ascribed a protective function over an array of intracellular components. We focus on how LEAPs may protect a stress-susceptible proteome. These examples include instances of LEAPs providing a shield molecule function, possibly by instigating liquid-liquid phase separations. Some LEAPs bind directly to their client proteins, exerting a holdase-type chaperonin function. Finally, instances of LEAP–client protein interactions have been documented, where the LEAP modulates (interferes with) the function of the client protein, acting as a surreptitious rheostat of cellular homeostasis. From the examples identified to date, it is apparent that client protein modulation also serves to mitigate stress. While some LEAPs can physically bind and protect client proteins, some apparently bind to assist the degradation of the client proteins with which they associate. Documented instances of LEAP–client protein binding, even in the absence of stress, brings to the fore the necessity of identifying how the LEAPs are degraded post-stress to render them innocuous, a first step in understanding how the cell regulates their abundance.


2014 ◽  
Vol 289 (46) ◽  
pp. 31995-32009 ◽  
Author(s):  
Lucero Y. Rivera-Najera ◽  
Gloria Saab-Rincón ◽  
Marina Battaglia ◽  
Carlos Amero ◽  
Nancy O. Pulido ◽  
...  

2012 ◽  
Vol 40 (5) ◽  
pp. 1000-1003 ◽  
Author(s):  
Dirk K. Hincha ◽  
Anja Thalhammer

LEA (late embryogenesis abundant) proteins were originally described almost 30 years ago as accumulating late in plant seed development. They were later found to be induced in vegetative plant tissues under environmental stress conditions and also in desiccation-tolerant micro-organisms and invertebrates. Although they are widely assumed to play crucial roles in cellular dehydration tolerance, their physiological and biochemical functions are largely unknown. Most LEA proteins are predicted to be intrinsically disordered and this has been experimentally verified in several cases. In addition, some LEA proteins partially fold, mainly into α-helices, during drying or in the presence of membranes. Recent studies have concentrated on the potential roles of LEA proteins in stabilizing membranes or sensitive enzymes during freezing or drying, and the present review concentrates on these two possible functions of LEA proteins in cellular dehydration tolerance.


2018 ◽  
Author(s):  
Sarah Klass ◽  
Matthew J. Smith ◽  
Tahoe Fiala ◽  
Jessica Lee ◽  
Anthony Omole ◽  
...  

Herein, we describe a new series of fusion proteins that have been developed to self-assemble spontaneously into stable micelles that are 27 nm in diameter after enzymatic cleavage of a solubilizing protein tag. The sequences of the proteins are based on a human intrinsically disordered protein, which has been appended with a hydrophobic segment. The micelles were found to form across a broad range of pH, ionic strength, and temperature conditions, with critical micelle concentration (CMC) values below 1 µM being observed in some cases. The reported micelles were found to solubilize hydrophobic metal complexes and organic molecules, suggesting their potential suitability for catalysis and drug delivery applications.


Sign in / Sign up

Export Citation Format

Share Document