scholarly journals Perceived training load and jumping responses following nine weeks of a competitive period in young female basketball players

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5225 ◽  
Author(s):  
Igor de Freitas Cruz ◽  
Lucas Adriano Pereira ◽  
Ronaldo Kobal ◽  
Katia Kitamura ◽  
Cristiano Cedra ◽  
...  

The aims of this study were to describe the session rating of perceived exertion (sRPE), total quality recovery (TQR), and variations in countermovement jump (CMJ) height throughout nine weeks of a competitive period in young female basketball players. In total, 10 young female basketball players (17.2 ± 0.4 years; 71.8 ± 15.0 kg; 177.2 ± 9.5 cm) participated in this study. The sRPE and TQR were assessed in each training session, whereas the CMJ height was assessed prior to the first weekly training session. The magnitude-based inferences method was used to compare the sRPE, TQR, and CMJ height across the nine weeks of training. The training loads accumulated in weeks 1, 2, and 3 were likely to almost certainly be higher than in the following weeks (ES varying from 0.67 to 2.55). The CMJ height in week 1 was very likely to be lower than in weeks 2, 5, 7, and 8 (ES varying from 0.24 to 0.34), while the CMJ height of the 9th week was likely to almost certainly be higher than all previous weeks of training (ES varying from 0.70 to 1.10). Accordingly, it was observed that when higher training loads were accumulated, both CMJ and TQR presented lower values than those presented during periods with lower internal training loads. These results highlight the importance of using a comprehensive and multivariate approach to effectively monitor the physical performance of young athletes.

2017 ◽  
Vol 12 (9) ◽  
pp. 1151-1156 ◽  
Author(s):  
Steven H. Doeven ◽  
Michel S. Brink ◽  
Wouter G.P. Frencken ◽  
Koen A.P.M. Lemmink

During intensified phases of competition, attunement of exertion and recovery is crucial to maintain performance. Although a mismatch between coach and player perceptions of training load is demonstrated, it is unknown if these discrepancies also exist for match exertion and recovery. Purpose:To determine match exertion and subsequent recovery and to investigate the extent to which the coach is able to estimate players’ match exertion and recovery. Methods:Rating of perceived exertion (RPE) and total quality of recovery (TQR) of 14 professional basketball players (age 26.7 ± 3.8 y, height 197.2 ± 9.1 cm, weight 100.3 ± 15.2 kg, body fat 10.3% ± 3.6%) were compared with observations of the coach. During an in-season phase of 15 matches within 6 wk, players gave RPEs after each match. TQR scores were filled out before the first training session after the match. The coach rated observed exertion (ROE) and recovery (TQ-OR) of the players. Results:RPE was lower than ROE (15.6 ± 2.3 and 16.1 ± 1.4; P = .029). Furthermore, TQR was lower than TQ-OR (12.7 ± 3.0 and 15.3 ± 1.3; P < .001). Correlations between coach- and player-perceived exertion and recovery were r = .25 and r = .21, respectively. For recovery within 1 d the correlation was r = .68, but for recovery after 1–2 d no association existed. Conclusion:Players perceive match exertion as hard to very hard and subsequent recovery reasonable. The coach overestimates match exertion and underestimates degree of recovery. Correspondence between coach and players is thus not optimal. This mismatch potentially leads to inadequate planning of training sessions and decreases in performance during fixture congestion in basketball.


2021 ◽  
Vol 16 (1) ◽  
pp. 45-50
Author(s):  
Steven H. Doeven ◽  
Michel S. Brink ◽  
Barbara C.H. Huijgen ◽  
Johan de Jong ◽  
Koen A.P.M. Lemmink

In elite basketball, players are exposed to intensified competition periods when participating in both national and international competitions. How coaches manage training between matches and in reference to match scheduling for a full season is not yet known. Purpose: First, to compare load during short-term match congestion (ie, ≥2-match weeks) with regular competition (ie, 1-match weeks) in elite male professional basketball players. Second, to determine changes in well-being, recovery, neuromuscular performance, and injuries and illnesses between short-term match congestion and regular competition. Methods: Sixteen basketball players (age 24.8 [2.0] y, height 195.8 [7.5] cm, weight 94.8 [14.0] kg, body fat 11.9% [5.0%], VO2max 51.9 [5.3] mL·kg−1·min−1) were monitored during a full season. Session rating of perceived exertion (s-RPE) was obtained, and load was calculated (s-RPE × duration) for each training session or match. Perceived well-being (fatigue, sleep quality, general muscle soreness, stress levels, and mood) and total quality of recovery were assessed each training day. Countermovement jump height was measured, and a list of injuries and illnesses was collected weekly using the adapted Oslo Sports Trauma Research Center Questionnaire on Health Problems. Results: Total load (training sessions and matches; P < .001) and training load (P < .001) were significantly lower for ≥2-match weeks. Significantly higher well-being (P = .01) and less fatigue (P = .001) were found during ≥2-match weeks compared with 1-match weeks. Conclusion: Total load and training load were lower during short-term match congestion compared with regular competition. Furthermore, better well-being and less fatigue were demonstrated within short-term match congestion. This might indicate that coaches tend to overcompensate training load in intensified competition.


Author(s):  
Markus N.C. Williams ◽  
Vincent J. Dalbo ◽  
Jordan L. Fox ◽  
Cody J. O’Grady ◽  
Aaron T. Scanlan

Purpose: To compare weekly training and game demands according to playing position in basketball players. Methods: A longitudinal, observational study was adopted. Semiprofessional, male basketball players categorized as backcourt (guards; n = 4) and frontcourt players (forwards/centers; n = 4) had their weekly workloads monitored across an entire season. External workload was determined using microsensors and included PlayerLoad™ (PL) and inertial movement analysis variables. Internal workload was determined using heart rate to calculate absolute and relative summated-heart-rate-zones workload and rating of perceived exertion (RPE) to calculate session-RPE workload. Comparisons between weekly training and game demands were made using linear mixed models and effect sizes in each positional group. Results: In backcourt players, higher relative PL (P = .04, very large) and relative summated-heart-rate-zones workload (P = .007, very large) were evident during training, while greater session-RPE workload (P = .001, very large) was apparent during games. In frontcourt players, greater PL (P < .001, very large), relative PL (P = .019, very large), peak PL intensities (P < .001, moderate), high-intensity inertial movement analysis events (P = .002, very large), total inertial movement analysis events (P < .001, very large), summated-heart-rate-zones workload (P < .001, very large), RPE (P < .001, very large), and session-RPE workload (P < .001, very large) were evident during games. Conclusions: Backcourt players experienced similar demands between training and games across several variables, with higher average workload intensities during training. Frontcourt players experienced greater demands across all variables during games than training. These findings emphasize the need for position-specific preparation strategies leading into games in basketball teams.


2019 ◽  
Vol 14 (7) ◽  
pp. 941-948 ◽  
Author(s):  
Henrikas Paulauskas ◽  
Rasa Kreivyte ◽  
Aaron T. Scanlan ◽  
Alexandre Moreira ◽  
Laimonas Siupsinskas ◽  
...  

Purpose:To assess the weekly fluctuations in workload and differences in workload according to playing time in elite female basketball players.Methods:A total of 29 female basketball players (mean [SD] age 21 [5] y, stature 181 [7] cm, body mass 71 [7] kg, playing experience 12 [5] y) belonging to the 7 women’s basketball teams competing in the first-division Lithuanian Women’s Basketball League were recruited. Individualized training loads (TLs) and game loads (GLs) were assessed using the session rating of perceived exertion after each training session and game during the entire in-season phase (24 wk). Percentage changes in total weekly TL (weekly TL + GL), weekly TL, weekly GL, chronic workload, acute:chronic workload ratio, training monotony, and training strain were calculated. Mixed linear models were used to assess differences for each dependent variable, with playing time (low vs high) used as fixed factor and subject, week, and team as random factors.Results:The highest changes in total weekly TL, weekly TL, and acute:chronic workload ratio were evident in week 13 (47%, 120%, and 49%, respectively). Chronic workload showed weekly changes ≤10%, whereas monotony and training strain registered highest fluctuations in weeks 17 (34%) and 15 (59%), respectively. A statistically significant difference in GL was evident between players completing low and high playing times (P = .026, moderate), whereas no significant differences (P > .05) were found for all other dependent variables.Conclusions:Coaches of elite women’s basketball teams should monitor weekly changes in workload during the in-season phase to identify weeks that may predispose players to unwanted spikes and adjust player workload according to playing time.


2018 ◽  
Vol 13 (9) ◽  
pp. 1182-1189 ◽  
Author(s):  
Paula B. Debien ◽  
Marcelly Mancini ◽  
Danilo R. Coimbra ◽  
Daniel G.S. de Freitas ◽  
Renato Miranda ◽  
...  

Purpose: To describe and analyze the distribution of internal training load (ITL), recovery, and physical performance of professional volleyball players throughout 1 season. Methods: Fifteen male professional Brazilian volleyball players participated in this study. The session rating of perceived exertion (s-RPE) and Total Quality Recovery (TQR) score were collected daily for 36 wk. s-RPE was collected after each training session, and TQR, before the first session of the day. The sum of the ITL of each session during the week, training monotony, strain, acute∶chronic workload ratio, match difficulty score, and average of the TQR scores were recorded for the analysis. In addition, the athletes performed countermovement-jump (CMJ) tests with and without the use of the arms 4 times over the season. Results: The season mean weekly ITL was 3733 (1228) AU and the TQR was 15.02 (0.71). The ITL and recovery demonstrated undulating dynamics over the 36 wk, with higher weekly ITL in the preparatory periods (F = 50.32; P < .001) and worse recovery during the main competition (F = 6.47; P = .004). Negative correlations were found between TQR and ITL variables (P < .05). There was improvement and maintenance in CMJ tests without (F = 11.88; P < .001) and with (F = 16.02; P < .001) the use of the arms after the preparatory periods. Conclusions: The ITL variables, recovery, and physical performance changed significantly throughout a professional volleyball season. Despite the decrease in ITL during the main competitive period, the correct distribution of weekly ITL seems to be very important to guarantee the best recovery of athletes.


Author(s):  
Markus N.C. Williams ◽  
Jordan L. Fox ◽  
Cody J. O’Grady ◽  
Samuel Gardner ◽  
Vincent J. Dalbo ◽  
...  

Purpose: To compare weekly training, game, and overall (training and games) demands across phases of the regular season in basketball. Methods: Seven semiprofessional, male basketball players were monitored during all on-court team-based training sessions and games during the regular season. External monitoring variables included PlayerLoad™ and inertial movement analysis events per minute. Internal monitoring variables included a modified summated heart rate zones model calculated per minute and rating of perceived exertion. Linear mixed models were used to compare training, game, and overall demands between 5-week phases (early, middle, and late) of the regular season with significance set at P ≤ .05. Effect sizes were calculated between phases and interpreted as: trivial, <0.20; small, 0.20 to 0.59; moderate, 0.60 to 1.19; large, 1.20 to 1.99; very large, ≥2.00. Results: Greater (P > .05) overall inertial movement analysis events (moderate–very large) and rating of perceived exertion (moderate) were evident in the late phase compared with earlier phases. During training, more accelerations were evident in the middle (P = .01, moderate) and late (P = .05, moderate) phases compared with the early phase, while higher rating of perceived exertion (P = .04, moderate) was evident in the late phase compared with earlier phases. During games, nonsignificant, trivial–small differences in demands were apparent between phases. Conclusions: Training and game demands should be interpreted in isolation and combined given overall player demands increased as the season progressed, predominantly due to modifications in training demands given the stability of game demands. Periodization strategies administered by coaching staff may have enabled players to train at greater intensities late in the season without compromising game intensity.


Author(s):  
Hugo Salazar ◽  
Luka Svilar ◽  
Ane Aldalur-Soto ◽  
Julen Castellano

The weekly training management and competition loads are important aspects to optimize the performance of professional basketball players. The objectives of the study were (a) to describe the weekly external load (EL), as well as the internal response (IR), of elite basketball players over two consecutive seasons with a different head coach and (b) to compare weekly loads of different competitive densities. The data were collected from 27 elite players from the same team competing in the Spanish first division league (ACB) and EuroLeague during 2017–2018 and 2018–2019 seasons. EL was measured using microsensor technology to determine PlayerLoad values, expressed in arbitrary units (AU). Session rating of perceived exertion (sRPE) was used for IR quantification. Comparisons between the two seasons and of weeks with different competitive densities were made. The inter-week load variability was moderate-high for both seasons. The highest EL values were measured during the weeks with three games (W3) (W3 > W0 > W2 > W1), while the most demanding week for players’ IR was observed during weeks with no competition (W0). Additionally, higher EL (d = 0.31) and IR (d = 0.37) values were observed in season 2018–2019 compared to 2017–2018. The results obtained in this study contributed new data on the internal and external load required by professional basketball players in weeks with different number of games and showed that different coaching strategies may demand a different external and internal workload in consecutive seasons. Furthermore, the results highlighted the need to carry out an adequate load management program.


Author(s):  
Che-Hsiu Chen ◽  
Yu-Chun Chen ◽  
Ren-Shiang Jiang ◽  
Lok-Yin Lo ◽  
I-Lin Wang ◽  
...  

The purpose of this study was to determine whether transcranial direct current stimulation (tDCS) can improve countermovement jump performance, fatigue index and alleviate the speed decline during repeated shuttle sprints in trained basketball players. Thirteen trained basketball players were divided into the tDCS trial and sham trial by the random crossover design. The tDCS trial was stimulated with 2-mA current in the M1 area in the middle of the top of the head for 20 min. For the sham trial, the current was turned off after 5 s, stopping the electrical stimulation. After warming up, the players underwent countermovement jump test, weighted countermovement jump test and then performed 40 × 15-m sprints with with a 1:4 exercise: rest ratio. The jump height, sprinting time, fatigue index, heart rate and rating of perceived exertion (RPE) were analyzed by paired-sample t-test, when significance was discovered by two-way repeated measures analysis of variance. The study results revealed that the tDCS trial significantly increase the countermovement jump performance (p = 0.04), decrease the sprinting time (p = 0.016), and had improved fatigue index during the sprinting process (p = 0.009). However, the heart rate and RPE during sprinting were nonsignificantly different between the trials. This study has identified that tDCS can decrease the speed decline, fatigue index during sprinting and increase countermovement jump performance without affecting heart rate or the rating of perceived exertion.


Author(s):  
Davide Ferioli ◽  
Aaron T. Scanlan ◽  
Daniele Conte ◽  
Emanuele Tibiletti ◽  
Ermanno Rampinini

Purpose: To quantify and compare the internal workloads experienced during the playoffs and regular season in basketball. Methods: A total of 10 professional male basketball players competing in the Italian first division were monitored during the final 6 weeks of the regular season and the entire 6-week playoff phase. Internal workload was quantified using the session rating of perceived exertion (s-RPE) method for all training sessions and games. A 2-way repeated-measures analysis of variance (day type × period) was utilized to assess differences in daily s-RPE between game days, days within 24 hours of games, and days >24 hours from games during the playoffs and regular season. Comparisons in weekly training, game, and total workloads were made between the playoffs and regular season using paired t tests and effect sizes. Results: A significant interaction between day and competitive period for s-RPE was found (P = .003, moderate). Lower s-RPE was apparent during playoff and regular-season days within 24 hours of games than all other days (P < .001, very large). Furthermore, s-RPE across days >24 hours from playoff games was different than all other days (P ≤ .01, moderate–very large). Weekly training (P = .009, very large) and total (P < .001, moderate) s-RPE were greater during the regular season than playoffs, whereas weekly game s-RPE was greater during the playoffs than the regular season (P < .001, very large). Conclusions: This study presents an exploratory investigation of internal workload during the playoffs in professional basketball. Players experienced greater training and total weekly workloads during the regular season than during the playoffs with similar daily game workloads between periods.


Retos ◽  
2020 ◽  
pp. 632-636
Author(s):  
Ana Denise Andrade ◽  
Mário Simim ◽  
Witalo Kassiano ◽  
José Manuel Palao ◽  
Karla De Jesus ◽  
...  

Summary. This study aimed to verify the differences between the training load planned by coaches and that perceived by Beach Volleyball (BV) players and observe the effects on athletes’ neuromuscular function. Three female BV players and well-known coaches participated in the research and were accompanied for three training weeks in the preseason phase. Rating of perceived exertion (RPE) was collected through the 0-10 scale during a previous training session. Strength, physical fitness and tactical-technical training have been assessed with coaches and athletes’ responses 30 minutes after the end of the session. RPE Session was calculated by the product between the training duration in minutes and RPE, to estimate Internal Training Load (ITL). Neuromuscular function was assessed through Countermovement Jump (CMJ). To verify differences between coaches and athletes’ responses and vertical jump performance were used either the magnitude of differences and clinical inference. Athletes experienced lower RPE and ITL as planned by coaches in the first week of training. CMJ increased substantially from the first to the third week (with likely differences (93/03/04), standardized difference = 1.60 and 90% confidence intervals = 0.00; 3.21). We suggest that training load planned by coaches similar to that perceived by athletes have a concomitant improvement with neuromuscular performance.Resumen. Este estudio tuvo como objetivo verificar las diferencias entre la carga de entrenamiento planificada por los entrenadores y la percibida por los jugadores de voleibol de playa (VP) y observar los efectos sobre la función neuromuscular de los atletas. Tres jugadoras de VP y entrenadores conocidos participaron en la investigación y fueron acompañadas durante tres semanas de entrenamiento en la fase de pretemporada. El valor nominal del esfuerzo percibido (NEP) se recolectó a través de la escala 0-10 durante una sesión de entrenamiento anterior. La fuerza, la forma física y el entrenamiento táctico-técnico se evaluaron con las respuestas de los entrenadores y atletas 30 minutos después del final de la sesión. El producto calculó la sesión de NEP entre la duración del entrenamiento en minutos y el NEP, para estimar la carga interna de entrenamiento (CIE). La función neuromuscular se evaluó mediante salto contramovimiento (SCM). Para verificar las diferencias entre los entrenadores y las respuestas de los atletas y el rendimiento del salto vertical, se utilizó la magnitud de las diferencias y la inferencia clínica. Los atletas experimentaron menos NEP e CIE que fueron planificados por los entrenadores en la primera semana de entrenamiento. SCM aumentó sustancialmente de la primera a la tercera semana (con diferencias probables (93/03/04), diferencia estandarizada = 1.60 e intervalos de confianza del 90% = 0.00; 3.21). Sugerimos que la carga de entrenamiento planificada por entrenadores similar a la percibida por los atletas tenga una mejora concomitante con el rendimiento neuromuscular.


Sign in / Sign up

Export Citation Format

Share Document