scholarly journals High-resolution maps of Swiss apiaries and their applicability to study spatial distribution of bacterial honey bee brood diseases

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6393 ◽  
Author(s):  
Raphael S. von Büren ◽  
Bernadette Oehen ◽  
Nikolaus J. Kuhn ◽  
Silvio Erler

Honey bees directly affect and are influenced by their local environment, in terms of food sources, pollinator densities, pathogen and toxin exposure and climate. Currently, there is a lack of studies analyzing these data with Geographic Information Systems (GIS) to investigate spatial relationships with the environment. Particularly for inter-colonial pathogen transmission, it is known that the likelihood of a healthy colony to become infested (e.g., Varroosis) or infected (e.g., American foulbrood—AFB, European foulbrood—EFB) increases with higher colony density. Whether these transmission paths can actually be asserted at apiary level is largely unknown. Here, we unraveled spatial distribution and high-resolution density of apiaries and bacterial honey bee brood diseases in Switzerland based on available GIS data. Switzerland as ‘model country’ offers the unique opportunity to get apiary data since 2010 owing to compulsory registration for every beekeeper. Further, both destructive bee brood diseases (AFB and EFB) are legally notifiable in Switzerland, and EFB has an epizootic character for the last decades. As governmental data sets have to be ameliorated, raw data from the cantonal agricultural or veterinary offices have been included. We found a mean density of 0.56 apiaries per km2, and high resolution spatial analyzes showed strong correlation between density of apiaries and human population density as well as agricultural landscape type. Concerning two bacterial bee brood diseases (AFB, EFB), no significant correlation was detectable with density of apiaries on cantonal level, though a high correlation of EFB cases and apiary density became obvious on higher resolution (district level). Hence, Swiss EFB epizootics seem to have benefited from high apiary densities, promoting the transmission of pathogens by adult bees. The GIS-based method presented here, might also be useful for other bee diseases, anthropogenic or environmental factors affecting bee colonies.

2021 ◽  
Author(s):  
Jouke de Baar ◽  
Gerard van der Schrier ◽  
Irene Garcia-Marti ◽  
Else van den Besselaar

<p><strong>Objective</strong></p><p>The purpose of the European Copernicus Climate Change Service (C3S) is to support society by providing information about the past, present and future climate. For the service related to <em>in-situ</em> observations, one of the objectives is to provide high-resolution (0.1x0.1 and 0.25x0.25 degrees) gridded wind speed fields. The gridded wind fields are based on ECA&D daily average station observations for the period 1970-2020.</p><p><strong>Research question</strong> </p><p>We address the following research questions: [1] How efficiently can we provide the gridded wind fields as a statistically reliable ensemble, in order to represent the uncertainty of the gridding? [2] How efficiently can we exploit high-resolution geographical auxiliary variables (e.g. digital elevation model, terrain roughness) to augment the station data from a sparse network, in order to provide gridded wind fields with high-resolution local features?</p><p><strong>Approach</strong></p><p>In our analysis, we apply greedy forward selection linear regression (FSLR) to include the high-resolution effects of the auxiliary variables on monthly-mean data. These data provide a ‘background’ for the daily estimates. We apply cross-validation to avoid FSLR over-fitting and use full-cycle bootstrapping to create FSLR ensemble members. Then, we apply Gaussian process regression (GPR) to regress the daily anomalies. We consider the effect of the spatial distribution of station locations on the GPR gridding uncertainty.</p><p>The goal of this work is to produce several decades of daily gridded wind fields, hence, computational efficiency is of utmost importance. We alleviate the computational cost of the FSLR and GPR analyses by incorporating greedy algorithms and sparse matrix algebra in the analyses.</p><p><strong>Novelty</strong>   </p><p>The gridded wind fields are calculated as a statistical ensemble of realizations. In the present analysis, the ensemble spread is based on uncertainties arising from the auxiliary variables as well as from the spatial distribution of stations.</p><p>Cross-validation is used to tune the GPR hyper parameters. Where conventional GPR hyperparameter tuning aims at an optimal prediction of the gridded mean, instead, we tune the GPR hyperparameters for optimal prediction of the gridded ensemble spread.</p><p>Building on our experience with providing similar gridded climate data sets, this set of gridded wind fields is a novel addition to the E-OBS climate data sets.</p>


2008 ◽  
Vol 16 ◽  
pp. 49-54 ◽  
Author(s):  
A. Morata ◽  
M. Y. Luna ◽  
M. L. Martín ◽  
M. G. Sotillo ◽  
F. Valero

Abstract. A 44-year (1958–2001) homogeneous Mediterranean high-resolution atmospheric database was generated through dynamical downscaling within the HIPOCAS Project framework. The present work attempts to provide a validation of the monthly 41-autumnal (1961–2001) HIPOCAS precipitation over the Iberian Peninsula, being also provided an evaluation of its improvement versus current global reanalysis data sets. A statistical comparative analysis between observed, HIPOCAS and global reanalyses precipitation data sets was carried out, highlighting the noticeable agreement existing between the observed and the HIPOCAS precipitation data sets in terms of not only time and spatial distribution, but also in terms of total amount of precipitation. A principal component analysis is carried out showing that the patterns derived from the HIPOCAS data largely capture the main characteristics of the studied field. Moreover, it is worth to note that the HIPOCAS patterns reproduce accurately the observed regional characteristics linked to the main orographic features of the study domain.


Author(s):  
Gary Bassell ◽  
Robert H. Singer

We have been investigating the spatial distribution of nucleic acids intracellularly using in situ hybridization. The use of non-isotopic nucleotide analogs incorporated into the DNA probe allows the detection of the probe at its site of hybridization within the cell. This approach therefore is compatible with the high resolution available by electron microscopy. Biotinated or digoxigenated probe can be detected by antibodies conjugated to colloidal gold. Because mRNA serves as a template for the probe fragments, the colloidal gold particles are detected as arrays which allow it to be unequivocally distinguished from background.


2015 ◽  
Vol 16 (1) ◽  
Author(s):  
Haoxuan Liu ◽  
Xiaohui Zhang ◽  
Ju Huang ◽  
Jian-Qun Chen ◽  
Dacheng Tian ◽  
...  

2020 ◽  
Vol 501 (1) ◽  
pp. 994-1001
Author(s):  
Suman Sarkar ◽  
Biswajit Pandey ◽  
Snehasish Bhattacharjee

ABSTRACT We use an information theoretic framework to analyse data from the Galaxy Zoo 2 project and study if there are any statistically significant correlations between the presence of bars in spiral galaxies and their environment. We measure the mutual information between the barredness of galaxies and their environments in a volume limited sample (Mr ≤ −21) and compare it with the same in data sets where (i) the bar/unbar classifications are randomized and (ii) the spatial distribution of galaxies are shuffled on different length scales. We assess the statistical significance of the differences in the mutual information using a t-test and find that both randomization of morphological classifications and shuffling of spatial distribution do not alter the mutual information in a statistically significant way. The non-zero mutual information between the barredness and environment arises due to the finite and discrete nature of the data set that can be entirely explained by mock Poisson distributions. We also separately compare the cumulative distribution functions of the barred and unbarred galaxies as a function of their local density. Using a Kolmogorov–Smirnov test, we find that the null hypothesis cannot be rejected even at $75{{\ \rm per\ cent}}$ confidence level. Our analysis indicates that environments do not play a significant role in the formation of a bar, which is largely determined by the internal processes of the host galaxy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jian-Yu Li ◽  
Yan-Ting Chen ◽  
Meng-Zhu Shi ◽  
Jian-Wei Li ◽  
Rui-Bin Xu ◽  
...  

AbstractA detailed knowledge on the spatial distribution of pests is crucial for predicting population outbreaks or developing control strategies and sustainable management plans. The diamondback moth, Plutella xylostella, is one of the most destructive pests of cruciferous crops worldwide. Despite the abundant research on the species’s ecology, little is known about the spatio-temporal pattern of P. xylostella in an agricultural landscape. Therefore, in this study, the spatial distribution of P. xylostella was characterized to assess the effect of landscape elements in a fine-scale agricultural landscape by geostatistical analysis. The P. xylostella adults captured by pheromone-baited traps showed a seasonal pattern of population fluctuation from October 2015 to September 2017, with a marked peak in spring, suggesting that mild temperatures, 15–25 °C, are favorable for P. xylostella. Geostatistics (GS) correlograms fitted with spherical and Gaussian models showed an aggregated distribution in 21 of the 47 cases interpolation contour maps. This result highlighted that spatial distribution of P. xylostella was not limited to the Brassica vegetable field, but presence was the highest there. Nevertheless, population aggregations also showed a seasonal variation associated with the growing stage of host plants. GS model analysis showed higher abundances in cruciferous fields than in any other patches of the landscape, indicating a strong host plant dependency. We demonstrate that Brassica vegetables distribution and growth stage, have dominant impacts on the spatial distribution of P. xylostella in a fine-scale landscape. This work clarified the spatio-temporal dynamic and distribution patterns of P. xylostella in an agricultural landscape, and the distribution model developed by geostatistical analysis can provide a scientific basis for precise targeting and localized control of P. xylostella.


2021 ◽  
Author(s):  
C. Odonjavkhlan ◽  
J.S. Alexsander ◽  
C. Mishra ◽  
G. Samelius ◽  
K. Sharma ◽  
...  

2012 ◽  
Vol 78 (8) ◽  
pp. 2941-2948 ◽  
Author(s):  
M. Sekelja ◽  
I. Rud ◽  
S. H. Knutsen ◽  
V. Denstadli ◽  
B. Westereng ◽  
...  

ABSTRACTOne of the main challenges in understanding the composition of fecal microbiota is that it can consist of microbial mixtures originating from different gastrointestinal (GI) segments. Here, we addressed this challenge for broiler chicken feces using a direct 16S rRNA gene-sequencing approach combined with multivariate statistical analyses. Broiler feces were chosen because of easy sampling and the importance for pathogen transmission to the human food chain. Feces were sampled daily for 16 days from chickens with and without a feed structure-induced stimulation of the gastric barrier function. Overall, we found four dominant microbial phylogroups in the feces. Two of the phylogroups were related to clostridia, one to lactobacilli, and one toEscherichia/Shigella. The relative composition of these phylogroups showed apparent stochastic temporal fluctuations in feces. Analyses of dissected chickens at the end of the experiment, however, showed that the two clostridial phylogroups were correlated to the microbiota in the cecum/colon and the small intestine, while the upper gut (crop and gizzard) microbiota was correlated to the lactobacillus phylogroup. In addition, chickens with a stimulated gizzard also showed less of the proximate GI dominating bacterial group in the feces, supporting the importance of the gastric barrier function. In conclusion, our results suggest that GI origin is a main determinant for the chicken fecal microbiota composition. This knowledge will be important for future understanding of factors affecting shedding of both harmful and beneficial gastrointestinal bacteria through feces.


Genetica ◽  
2021 ◽  
Author(s):  
Leonardo P. Porrini ◽  
Constanza Brasesco ◽  
Matias Maggi ◽  
Martín J. Eguaras ◽  
Silvina Quintana

2018 ◽  
Vol 612 ◽  
pp. A70 ◽  
Author(s):  
J. Olivares ◽  
E. Moraux ◽  
L. M. Sarro ◽  
H. Bouy ◽  
A. Berihuete ◽  
...  

Context. Membership analyses of the DANCe and Tycho + DANCe data sets provide the largest and least contaminated sample of Pleiades candidate members to date. Aims. We aim at reassessing the different proposals for the number surface density of the Pleiades in the light of the new and most complete list of candidate members, and inferring the parameters of the most adequate model. Methods. We compute the Bayesian evidence and Bayes Factors for variations of the classical radial models. These include elliptical symmetry, and luminosity segregation. As a by-product of the model comparison, we obtain posterior distributions for each set of model parameters. Results. We find that the model comparison results depend on the spatial extent of the region used for the analysis. For a circle of 11.5 parsecs around the cluster centre (the most homogeneous and complete region), we find no compelling reason to abandon King’s model, although the Generalised King model introduced here has slightly better fitting properties. Furthermore, we find strong evidence against radially symmetric models when compared to the elliptic extensions. Finally, we find that including mass segregation in the form of luminosity segregation in the J band is strongly supported in all our models. Conclusions. We have put the question of the projected spatial distribution of the Pleiades cluster on a solid probabilistic framework, and inferred its properties using the most exhaustive and least contaminated list of Pleiades candidate members available to date. Our results suggest however that this sample may still lack about 20% of the expected number of cluster members. Therefore, this study should be revised when the completeness and homogeneity of the data can be extended beyond the 11.5 parsecs limit. Such a study will allow for more precise determination of the Pleiades spatial distribution, its tidal radius, ellipticity, number of objects and total mass.


Sign in / Sign up

Export Citation Format

Share Document