scholarly journals Training-induced increase in Achilles tendon stiffness affects tendon strain pattern during running

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6764 ◽  
Author(s):  
Amelie Werkhausen ◽  
Neil J. Cronin ◽  
Kirsten Albracht ◽  
Gøran Paulsen ◽  
Askild V. Larsen ◽  
...  

Background During the stance phase of running, the elasticity of the Achilles tendon enables the utilisation of elastic energy and allows beneficial contractile conditions for the triceps surae muscles. However, the effect of changes in tendon mechanical properties induced by chronic loading is still poorly understood. We tested the hypothesis that a training-induced increase in Achilles tendon stiffness would result in reduced tendon strain during the stance phase of running, which would reduce fascicle strains in the triceps surae muscles, particularly in the mono-articular soleus. Methods Eleven subjects were assigned to a training group performing isometric single-leg plantarflexion contractions three times per week for ten weeks, and another ten subjects formed a control group. Before and after the training period, Achilles tendon stiffness was estimated, and muscle-tendon mechanics were assessed during running at preferred speed using ultrasonography, kinematics and kinetics. Results Achilles tendon stiffness increased by 18% (P < 0.01) in the training group, but the associated reduction in strain seen during isometric contractions was not statistically significant. Tendon elongation during the stance phase of running was similar after training, but tendon recoil was reduced by 30% (P < 0.01), while estimated tendon force remained unchanged. Neither gastrocnemius medialis nor soleus fascicle shortening during stance was affected by training. Discussion These results show that a training-induced increase in Achilles tendon stiffness altered tendon behaviour during running. Despite training-induced changes in tendon mechanical properties and recoil behaviour, the data suggest that fascicle shortening patterns were preserved for the running speed that we examined. The asymmetrical changes in tendon strain patterns supports the notion that simple in-series models do not fully explain the mechanical output of the muscle-tendon unit during a complex task like running.

2009 ◽  
Vol 106 (4) ◽  
pp. 1249-1256 ◽  
Author(s):  
Anthony D. Kay ◽  
Anthony J. Blazevich

The effects of static stretch on muscle and tendon mechanical properties and muscle activation were studied in fifteen healthy human volunteers. Peak active and passive moment data were recorded during plantar flexion trials on an isokinetic dynamometer. Electromyography (EMG) monitoring of the triceps surae muscles, real-time motion analysis of the lower leg, and ultrasound imaging of the Achilles-medial gastrocnemius muscle-tendon junction were simultaneously conducted. Subjects performed three 60-s static stretches before being retested 2 min and 30 min poststretch. There were three main findings in the present study. First, peak concentric moment was significantly reduced after stretch; 60% of the deficit recovered 30 min poststretch. This was accompanied by, and correlated with ( r = 0.81 ; P < 0.01) reductions in peak triceps surae EMG amplitude, which was fully recovered at 30 min poststretch. Second, Achilles tendon length was significantly shorter during the concentric contraction after stretch and at 30 min poststretch; however, no change in tendon stiffness was detected. Third, passive joint moment was significantly reduced after stretch, and this was accompanied by significant reductions in medial gastrocnemius passive muscle stiffness; both measures fully recovered by 30 min poststretch. These data indicate that the stretching protocol used in this study induced losses in concentric moment that were accompanied by, and related to, reductions in neuromuscular activity, but they were not associated with alterations in tendon stiffness or shorter muscle operating length. Reductions in passive moment were associated with reductions in muscle stiffness, whereas tendon mechanics were unaffected by the stretch. Importantly, the impact on mechanical properties and neuromuscular activity was minimal at 30 min poststretch.


2013 ◽  
Vol 114 (5) ◽  
pp. 523-537 ◽  
Author(s):  
Alexandre Fouré ◽  
Antoine Nordez ◽  
Christophe Cornu

Eccentric training is a mechanical loading classically used in clinical environment to rehabilitate patients with tendinopathies. In this context, eccentric training is supposed to alter tendon mechanical properties but interaction with the other components of the muscle-tendon complex remains unclear. The aim of this study was to determine the specific effects of 14 wk of eccentric training on muscle and tendon mechanical properties assessed in active and passive conditions in vivo. Twenty-four subjects were randomly divided into a trained group ( n = 11) and a control group ( n = 13). Stiffness of the active and passive parts of the series elastic component of plantar flexors were determined using a fast stretch during submaximal isometric contraction, Achilles tendon stiffness and dissipative properties were assessed during isometric plantar flexion, and passive stiffness of gastrocnemii muscles and Achilles tendon were determined using ultrasonography while ankle joint was passively moved. A significant decrease in the active part of the series elastic component stiffness was found ( P < 0.05). In contrast, a significant increase in Achilles tendon stiffness determined under passive conditions was observed ( P < 0.05). No significant change in triceps surae muscles and Achilles tendon geometrical parameters was shown ( P > 0.05). Specific changes in muscle and tendon involved in plantar flexion are mainly due to changes in intrinsic mechanical properties of muscle and tendon tissues. Specific assessment of both Achilles tendon and plantar flexor muscles allowed a better understanding of the functional behavior of the muscle-tendon complex and its adaptation to eccentric training.


Author(s):  
Alfredo Bravo-Sánchez ◽  
Pablo Abián ◽  
Filipa Sousa ◽  
Fernando Jimenez ◽  
Javier Abián-Vicén

Regular sport practice could prevent age-related changes in tendinous tissues. The purpose of the study was to investigate the effect of regular badminton practice on patellar and Achilles tendon mechanical properties in senior competitive badminton players (>35 years old) and to compare the results with physically active people matched by age. One hundred ninety-two badminton players and 193 physically active people were divided by age into four groups, between 35 and 44 (U45), between 45 and 54 (U55), between 55 and 64 (U65), and over 65 (O65) years old. A LogiqS8 transducer in elastography mode and a MyotonPRO myotonometer were used to assess patellar and Achilles mechanical properties. Achilles tendon stiffness was higher in the control group than the badminton players for the U45, U55, and O65 age groups (p < .01). Also, the elastography index was higher in the control group than the badminton players for the U45, U55, U65, and O65 age groups (p < .05). In conclusion, regular badminton practice could prevent the decline in mechanical properties of the patellar and Achilles tendons.


2019 ◽  
Vol 11 (2) ◽  
pp. 157-162 ◽  
Author(s):  
Iver Cristi-Sánchez ◽  
Claudia Danes-Daetz ◽  
Alejandro Neira ◽  
Wilson Ferrada ◽  
Roberto Yáñez Díaz ◽  
...  

Background: Tendon overuse injuries are an issue in elite footballers (soccer players) and may affect tendon function. Achilles and patellar tendinopathy are the most frequent pathologies. Tendon stiffness, the relationship between the force applied to a tendon and the displacement exerted, may help represent tendon function. Stiffness is affected by training and pathology. Nevertheless, information regarding this mechanical property is lacking for elite soccer athletes. Hypothesis: Achilles and patellar tendon stiffness assessed using myotonometric measurements will be greater in elite soccer athletes than in control participants. Study Design: Cross-sectional study. Level of Evidence: Level 4. Methods: Forty-nine elite soccer athletes and 49 control participants were evaluated during the 2017 preseason. A handheld device was used to measure Achilles and patellar tendon stiffness. Dominant and nondominant limbs were assessed for both groups. Results: A significantly stiffer patellar tendon was found for both the dominant and the nondominant limb in the elite soccer athletes compared with the control group. Nevertheless, no differences were found in Achilles tendon stiffness between groups. When comparing between playing positions in soccer athletes, no significant differences were found for both tendons. Conclusion: Greater patellar tendon stiffness may be related to an improvement in force transmission during muscle contraction. On the other hand, it seems that after years of professional training, Achilles tendon stiffness does not change, conserving the storing-releasing function of elastic energy. The nonsignificant differences between positions may be attributable to the years of homogeneous training that the players underwent. Clinical Relevance: The present study shows another technique for measuring mechanical properties of tendons in soccer athletes that could be used in clinical settings. In the future, this technique may help clinicians choose the best exercise protocol to address impairments in tendon stiffness.


2020 ◽  
Vol 120 (12) ◽  
pp. 2715-2727
Author(s):  
Nikolaos Pentidis ◽  
Falk Mersmann ◽  
Sebastian Bohm ◽  
Erasmia Giannakou ◽  
Nickos Aggelousis ◽  
...  

Abstract Purpose Evidence on training-induced muscle hypertrophy during preadolescence is limited and inconsistent. Possible associations of muscle strength and tendon stiffness with jumping performance are also not investigated. We investigated the thickness and pennation angle of the gastrocnemius medialis muscle (GM), as indicators for potential muscle hypertrophy in preadolescent athletes. Further, we examined the association of triceps surae muscle–tendon properties with jumping performance. Methods Eleven untrained children (9 years) and 21 similar-aged artistic gymnastic athletes participated in the study. Muscle thickness and pennation angle of the GM were measured at rest and muscle strength of the plantar flexors and Achilles tendon stiffness during maximum isometric contractions. Jumping height in squat (SJ) and countermovement jumps (CMJ) was examined using a force plate. We evaluated the influence of normalised muscle strength and tendon stiffness on jumping performance with a linear regression model. Results Muscle thickness and pennation angle did not differ significantly between athletes and non-athletes. In athletes, muscle strength was greater by 25% and jumping heights by 36% (SJ) and 43% (CMJ), but Achilles tendon stiffness did not differ between the two groups. The significant predictor for both jump heights was tendon stiffness in athletes and normalised muscle strength for the CMJ height in non-athletes. Conclusion Long-term artistic gymnastics training during preadolescence seems to be associated with increased muscle strength and jumping performance but not with training-induced muscle hypertrophy or altered tendon stiffness in the plantar flexors. Athletes benefit more from tendon stiffness and non-athletes more from muscle strength for increased jumping performance.


2015 ◽  
Vol 309 (9) ◽  
pp. R1135-R1143 ◽  
Author(s):  
Brent D. Volper ◽  
Richard T. Huynh ◽  
Kathryn A. Arthur ◽  
Joshua Noone ◽  
Benjamin D. Gordon ◽  
...  

Diabetes is a major risk factor for tendinopathy, and tendon abnormalities are common in diabetic patients. The purpose of the present study was to evaluate the effect of streptozotocin (60 mg/kg)-induced diabetes and insulin therapy on tendon mechanical and cellular properties. Sprague-Dawley rats ( n = 40) were divided into the following four groups: nondiabetic (control), 1 wk of diabetes (acute), 10 wk of diabetes (chronic), and 10 wk of diabetes with insulin treatment (insulin). After 10 wk, Achilles tendon and tail fascicle mechanical properties were similar between groups ( P > 0.05). Cell density in the Achilles tendon was greater in the chronic group compared with the control and acute groups (control group: 7.8 ± 0.5 cells/100 μm2, acute group: 8.3 ± 0.4 cells/100 μm2, chronic group: 10.9 ± 0.9 cells/100 μm2, and insulin group: 9.2 ± 0.8 cells/100 μm2, P < 0.05). The density of proliferating cells in the Achilles tendon was greater in the chronic group compared with all other groups (control group: 0.025 ± 0.009 cells/100 μm2, acute group: 0.019 ± 0.005 cells/100 μm2, chronic group: 0.067 ± 0.015, and insulin group: 0.004 ± 0.004 cells/100 μm2, P < 0.05). Patellar tendon collagen content was ∼32% greater in the chronic and acute groups compared with the control or insulin groups (control group: 681 ± 63 μg collagen/mg dry wt, acute group: 938 ± 21 μg collagen/mg dry wt, chronic: 951 ± 52 μg collagen/mg dry wt, and insulin group: 596 ± 84 μg collagen/mg dry wt, P < 0.05). In contrast, patellar tendon hydroxylysyl pyridinoline cross linking and collagen fibril organization were unchanged by diabetes or insulin ( P > 0.05). Our findings suggest that 10 wk of streptozotocin-induced diabetes does not alter rat tendon mechanical properties even with an increase in collagen content. Future studies could attempt to further address the mechanisms contributing to the increase in tendon problems noted in diabetic patients, especially since our data suggest that hyperglycemia per se does not alter tendon mechanical properties.


2015 ◽  
Vol 119 (3) ◽  
pp. 242-249 ◽  
Author(s):  
Jason R. Franz ◽  
Darryl G. Thelen

The anatomical arrangement of the Achilles tendon (AT), with distinct fascicle bundles arising from the gastrocnemius and soleus muscles, may facilitate relatively independent behavior of the triceps surae muscles. A reduced capacity for sliding between adjacent tendon fascicles with age may couple gastrocnemius and soleus muscle behavior, thereby potentially contributing to diminished plantarflexor performance commonly observed in old adults. Nine healthy young (mean age, 23.9 yr) and eight healthy old (69.9 yr) adults walked at three speeds (0.75, 1.00, and 1.25 m/s) on a force-sensing treadmill. We coupled dynamic ultrasound imaging of the free AT with motion capture and inverse dynamic analyses to compute, in part: 1) depth-dependent variations in AT tissue displacements and elongations and 2) net ankle joint kinetics during push-off. The difference in displacements between superficial and deep AT regions, and in their corresponding elongations, did not differ between old and young adults at the slower two walking speeds ( P > 0.61). However, old adults walked with 41% smaller depth-dependent variations in free AT displacements and elongations at 1.25 m/s ( P = 0.02). These more uniform tendon deformations in old adults most strongly correlated with reduced peak ankle moment ( R2= 0.40), but also significantly correlated with reduced peak power generation ( R2= 0.15) and positive ankle work during push-off ( R2= 0.19) ( P > 0.01). Our findings: 1) demonstrate a potential role for nonuniform AT deformations in governing gastrocnemius and soleus muscle-tendon function and 2) allude to altered tendon behavior that may contribute to the age-related reduction in plantarflexor performance during walking.


2012 ◽  
Vol 37 (1) ◽  
pp. 14-20 ◽  
Author(s):  
Thomas Lapole ◽  
Chantal Pérot

In a previous study, Achilles tendon vibrations were enough to improve the triceps surae (TS) activation capacities and also to slightly increase TS Hoffmann reflex (H-reflex) obtained by summing up soleus (Sol) and gastrocnemii (GM and GL) EMGs. The purpose of the present study was to analyze separately Sol and GM or GL reflexes to account for different effects of the vibrations on the reflex excitability of the slow soleus and of the gastrocnemii muscles. A control group (n = 13) and a vibration group (n = 16) were tested in pre-test and post-test conditions. The Achilles tendon vibration program consisted of 1 h of daily vibration (frequency: 50 Hz) applied during 14 days. Maximal Sol, GM and GL H-reflexes, and M-waves were recorded, and their Hmax/Mmax ratios gave the index of reflex excitability. After the vibration protocol, only Sol Hmax/Mmax was enhanced (p < 0.001). The enhanced Sol reflex excitability after vibration is in favor of a decrease in the pre-synaptic inhibition due to the repeated vibrations and the high solicitation of the reflex pathway. Those results of a short period of vibration applied at rest may be limited to the soleus because of its high density in muscle spindles and slow motor units, both structures being very sensitive to vibrations.


2020 ◽  
Vol 11 ◽  
Author(s):  
Kiros Karamanidis ◽  
Gaspar Epro

Differences in muscle and tendon responsiveness to mechanical stimuli and time courses of adaptive changes may disrupt the interaction of the musculotendinous unit (MTU), increasing the risk for overuse injuries. We monitored training-induced alterations in muscle and tendon biomechanical properties in elite jumpers over 4 years of athletic training to detect potential non-synchronized adaptations within the triceps surae MTU. A combined cross-sectional and longitudinal investigation over 4 years was conducted by analyzing triceps surae MTU mechanical properties in both legs via dynamometry and ultrasonography in 67 elite track and field jumpers and 24 age-matched controls. Fluctuations in muscle and tendon adaptive changes over time were quantified by calculating individual residuals. The cosine similarity of the relative changes of muscle strength and tendon stiffness between sessions served as a measure of uniformity of adaptive changes. Our cross-sectional study was unable to detect clear non-concurrent differences in muscle strength and tendon stiffness in elite jumpers. However, when considering the longitudinal data over several years of training most of the jumpers demonstrated greater fluctuations in muscle strength and tendon stiffness and hence tendon strain compared to controls, irrespective of training period (preparation vs. competition). Moreover, two monitored athletes with chronic Achilles tendinopathy showed in their affected limb lower uniformity in MTU adaptation as well as higher fluctuations in tendon strain over time. Habitual mechanical loading can affect the MTU uniformity in elite jumpers, leading to increased mechanical demand on the tendon over an athletic season and potentially increased risk for overuse injuries.


Sign in / Sign up

Export Citation Format

Share Document