scholarly journals The complete genome of Banana streak GF virus Yunnan isolate infecting Cavendish Musa AAA group in China

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8459
Author(s):  
Wei-li Li ◽  
Nai-tong Yu ◽  
Jian-hua Wang ◽  
Jun-cheng Li ◽  
Zhi-xin Liu

Banana streak virus (BSV) belongs to the members of the genus Badnavirus, family Caulimoviridae. At present, BSV contains nine species in the International Committee on Taxonomy of Viruses (ICTV) classification report (2018b release). Previous study indicated that the viral particles of Banana streak virus Acuminata Yunnan (BSV-Acum) were purified from banana (Cavendish Musa AAA group) leaves in Yunnan Province, China, and its complete genome was obtained. To further determine whether this sample infecting with Banana streak GF virus (BSGFV), the polymerase chain reaction (PCR) cloning and complete genome analysis of the Banana streak GF virus Yunnan isolate (BSGFV-YN) isolate were carried out in this study. The result showed that BSGFV-YN infecting Cavendish Musa AAA group was co-infecting this sample. Its genome contains a total of 7,325 bp in length with 42% GC content. This complete genome sequence was deposited in GenBank under accession number MN296502. Sequence analysis showed that the complete genome of BSGFV-YN was 98.14% sequence similarity to BSGFV Goldfinger, while it was 49.10–57.09% to other BSV species. Two phylogenetic trees based on the complete genome and ORFIII polyprotein indicated that BSGFV-YN and other BSV species clustered into a group, while it was the highest homology with BSGFV Goldfinger. Although BSGFV-YN and BSGFV Goldfinger were highly homologous, their cultivating bananas are different. The former cultivating banana was from Cavendish Musa AAA group, while the latter cultivating banana was from Goldfinger Musa AAAB group. Compared with BSGFV Goldfinger, the genome of BSGFV-YN has an extra multiple repetitive sequences in the intergenetic region between ORFIII and ORFI, suggesting that this region might be related to host selection. In summary, a BSGFV-YN distant from BSV-Acum was identified from the same sample, and its complete genome sequence was determined and analyzed. The study extends the polymorphism of BSVs in China and provides scientific clue for the evolutionary relationship with host selection of badnaviruses.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
So-Ra Han ◽  
Byeollee Kim ◽  
Jong Hwa Jang ◽  
Hyun Park ◽  
Tae-Jin Oh

Abstract Background The Arthrobacter group is a known set of bacteria from cold regions, the species of which are highly likely to play diverse roles at low temperatures. However, their survival mechanisms in cold regions such as Antarctica are not yet fully understood. In this study, we compared the genomes of 16 strains within the Arthrobacter group, including strain PAMC25564, to identify genomic features that help it to survive in the cold environment. Results Using 16 S rRNA sequence analysis, we found and identified a species of Arthrobacter isolated from cryoconite. We designated it as strain PAMC25564 and elucidated its complete genome sequence. The genome of PAMC25564 is composed of a circular chromosome of 4,170,970 bp with a GC content of 66.74 % and is predicted to include 3,829 genes of which 3,613 are protein coding, 147 are pseudogenes, 15 are rRNA coding, and 51 are tRNA coding. In addition, we provide insight into the redundancy of the genes using comparative genomics and suggest that PAMC25564 has glycogen and trehalose metabolism pathways (biosynthesis and degradation) associated with carbohydrate active enzyme (CAZymes). We also explain how the PAMC26654 produces energy in an extreme environment, wherein it utilizes polysaccharide or carbohydrate degradation as a source of energy. The genetic pattern analysis of CAZymes in cold-adapted bacteria can help to determine how they adapt and survive in such environments. Conclusions We have characterized the complete Arthrobacter sp. PAMC25564 genome and used comparative analysis to provide insight into the redundancy of its CAZymes for potential cold adaptation. This provides a foundation to understanding how the Arthrobacter strain produces energy in an extreme environment, which is by way of CAZymes, consistent with reports on the use of these specialized enzymes in cold environments. Knowledge of glycogen metabolism and cold adaptation mechanisms in Arthrobacter species may promote in-depth research and subsequent application in low-temperature biotechnology.



2018 ◽  
Vol 6 (22) ◽  
Author(s):  
Haifeng Chen ◽  
Shiliang Wang ◽  
Weimin Wang

ABSTRACT We report here the complete genome sequence of a GII.6 norovirus strain detected in a clinical fecal specimen from the United States. The virus genome has a length of 7,547 bp and a GC content of 50.1%. Complete norovirus genotyping of the full-genome sequence identified the virus genotype as GII.P6_GII.6.



2021 ◽  
Author(s):  
Amit Kumar ◽  
Malyaj R Prajapati ◽  
Surendra Upadhyay ◽  
Anamika Bhordia ◽  
Vinod Kumar Singh ◽  
...  

Abstract The present report communicates the first complete genome sequence of Brucella abortus 2308 strain isolated from a an abortion storm in a dairy farm located at Kanpur, Uttar Pradesh in India. It caused the last trimester abortions of 32 animals out of 100 cows in a dairy over a period of 60 days. The bacteria were isolated in pure culture from the placenta of aborted cows. The genome sequence length of isolated bacteria is 3,285,606 bp with a 57.25 % GC content, an N50 value of 296,426, L50 value of 4 containing 3,119 coding DNA sequences (CDSs), 49 tRNAs, 1 transfer messenger RNA (mRNA), and 3 rRNA genes. It is the first report of Brucella abortus 2308 isolation and complete genome sequence from Indian subcontinent.



PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e4127 ◽  
Author(s):  
Zhigang Tu ◽  
Hongyue Li ◽  
Xiang Zhang ◽  
Yun Sun ◽  
Yongcan Zhou

Vibrio harveyi is a Gram-negative, halophilic bacterium that is an opportunistic pathogen of commercially farmed marine vertebrate species. To understand the pathogenicity of this species, the genome of V. harveyi QT520 was analyzed and compared to that of other strains. The results showed the genome of QT520 has two unique circular chromosomes and three endogenous plasmids, totaling 6,070,846 bp with a 45% GC content, 5,701 predicted ORFs, 134 tRNAs and 37 rRNAs. Common virulence factors, including ACF, IlpA, OmpU, Flagellin, Cya, Hemolysin and MARTX, were detected in the genome, which are likely responsible for the virulence of QT520. The results of genomes comparisons with strains ATCC 33843 (392 (MAV)) and ATCC 43516 showed that greater numbers genes associated with types I, II, III, IV and VI secretion systems were detected in QT520 than in other strains, suggesting that QT520 is a highly virulent strain. In addition, three plasmids were only observed in the complete genome sequence of strain QT520. In plasmid p1 of QT520, specific virulence factors (cyaB, hlyB and rtxA) were identified, suggesting that the pathogenicity of this strain is plasmid-associated. Phylogenetic analysis of 12 complete Vibrio sp. genomes using ANI values, core genes and MLST revealed that QT520 was most closely related to ATCC 33843 (392 (MAV)) and ATCC 43516, suggesting that QT520 belongs to the species V. harveyi. This report is the first to describe the complete genome sequence of a V. harveyi strain isolated from an outbreak in a fish species in China. In addition, to the best of our knowledge, this report is the first to compare the V. harveyi genomes of several strains. The results of this study will expand our understanding of the genome, genetic characteristics, and virulence factors of V. harveyi, setting the stage for studies of pathogenesis, diagnostics, and disease prevention.



2021 ◽  
Vol 10 (41) ◽  
Author(s):  
Anna Maria Cuppone ◽  
Lorenzo Colombini ◽  
Valeria Fox ◽  
David Pinzauti ◽  
Francesco Santoro ◽  
...  

The complete genome sequence of Streptococcus pneumoniae strain Rx1, a Hex mismatch repair-deficient standard transformation recipient, was obtained by combining Nanopore and Illumina sequencing technologies. The genome consists of a 2.03-Mb circular chromosome, with 2,054 open reading frames and a GC content of 39.72%.



2018 ◽  
Vol 7 (22) ◽  
Author(s):  
Luana Bresciani ◽  
Leandro N. Lemos ◽  
Nina Wale ◽  
Jonathan Y. Lin ◽  
Alexander T. Strauss ◽  
...  

We report here the near-complete genome sequence of “Candidatus Spirobacillus cienkowskii,” a spiral-shaped, red-pigmented uncultivated bacterial pathogen of Daphnia spp. The genome is 2.74 Mbp in size, has a GC content of 32.1%, and contains genes associated with bacterial motility and the production of carotenoids, which could explain the distinctive red color of hosts infected with this pathogen.



2020 ◽  
Vol 9 (39) ◽  
Author(s):  
Daniel Valenzuela-Heredia ◽  
Carlos Henríquez-Castillo ◽  
Raúl Donoso ◽  
Paris Lavín ◽  
María S. Pavlov ◽  
...  

ABSTRACT Here, we report the complete genome sequence of Pseudomonas chilensis strain ABC1, which was isolated from a soil interstitial water sample collected at the University Adolfo Ibañez, Valparaiso, Chile. We assembled PacBio reads into a single closed contig with 209× mean coverage, yielding a 4,035,896-bp sequence with 62% GC content and 3,555 predicted genes.



2020 ◽  
Vol 9 (26) ◽  
Author(s):  
Yingyu Liu ◽  
Xing Ma ◽  
Tyler C. Helmann ◽  
Heather McLane ◽  
Paul Stodghill ◽  
...  

ABSTRACT We report the complete and annotated genome sequence of a Gram-positive bacterium, Leifsonia sp. strain PS1209, a potato endophyte that was isolated from apparently healthy tubers of potato cultivar NY166. The circular genome is 4,091,164 bp long, with a GC content of 69.08%, containing 3,926 genes.



2019 ◽  
Vol 8 (5) ◽  
Author(s):  
Solange Ngazoa-Kakou ◽  
Yuyu Shao ◽  
Geneviève M. Rousseau ◽  
Audrey A. Addablah ◽  
Denise M. Tremblay ◽  
...  

The lytic Escherichia coli siphophage BRET was isolated from a chicken obtained at a local market in Abidjan, Côte d’Ivoire. Its linear genome sequence consists of 59,550 bp (43.4% GC content) and contains 88 predicted genes, including 4 involved in archaeosine biosynthesis.



2016 ◽  
Vol 4 (2) ◽  
Author(s):  
Jun Kong ◽  
Hongshan Jiang ◽  
Baiyun Li ◽  
Wenjun Zhao ◽  
Zhihong Li ◽  
...  

Pseudomonas syringae pv. lapsa is a pathovar of Pseudomonas syringae that can infect wheat. The complete genome of P. syringae pv. lapsa strain ATCC 10859 contains a 5,918,899-bp circular chromosome with 4,973 coding sequences, 16 rRNAs, 69 tRNAs, and an average GC content of 59.13%. The analysis of this genome revealed several gene clusters that are related to pathogenesis and virulence.



Sign in / Sign up

Export Citation Format

Share Document