scholarly journals Low frequencies in the display vocalization of the Western Capercaillie (Tetrao urogallus)

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9189
Author(s):  
Vlastimil Hart ◽  
Richard Policht ◽  
Vojtěch Jandák ◽  
Marek Brothánek ◽  
Hynek Burda

Only a few bird species are known to produce low-frequency vocalizations. We analyzed the display vocalizations of Western Capercaillie males kept in breeding centers and identified harmonically structured signals with a fundamental frequency of 28.7 ± 1.2 Hz (25.6–31.6 Hz). These low-frequency components temporally overlap with the Whetting phase (96% of its duration) and they significantly contribute to the distinct vocal expression between individuals. The resulting model of discrimination analysis classified 67.6% vocalizations (63%, cross-validated result) correctly to the specific individual in comparison to the probability by chance of 12.5%. We discuss a possible function of low-frequency components that remains unclear. The occurrence of such low frequencies is surprising as this grouse is substantially smaller than cassowaries (Southern cassowary Casuarius casuarius and Dwarf cassowary Casuarius bennetti) , the species that produces similarly low frequencies. Because these low frequency components temporarily overlap with the Whetting phase, they are hardly audible from a distance larger than several meters.

Author(s):  
Gundula B. Runge ◽  
Al Ferri ◽  
Bonnie Ferri

This paper considers an anytime strategy to implement controllers that react to changing computational resources. The anytime controllers developed in this paper are suitable for cases when the time scale of switching is in the order of the task execution time, that is, on the time scale found commonly with sporadically missed deadlines. This paper extends the prior work by developing frequency-weighted anytime controllers. The selection of the weighting function is driven by the expectation of the situations that would require anytime operation. For example, if the anytime operation is due to occasional and isolated missed deadlines, then the weighting on high frequencies should be larger than that for low frequencies. Low frequency components will have a smaller change over one sample time, so failing to update these components for one sample period will have less effect than with the high frequency components. An example will be included that applies the anytime control strategy to a model of a DC motor with deadzone and saturation nonlinearities.


Geophysics ◽  
2019 ◽  
Vol 84 (6) ◽  
pp. R989-R1001 ◽  
Author(s):  
Oleg Ovcharenko ◽  
Vladimir Kazei ◽  
Mahesh Kalita ◽  
Daniel Peter ◽  
Tariq Alkhalifah

Low-frequency seismic data are crucial for convergence of full-waveform inversion (FWI) to reliable subsurface properties. However, it is challenging to acquire field data with an appropriate signal-to-noise ratio in the low-frequency part of the spectrum. We have extrapolated low-frequency data from the respective higher frequency components of the seismic wavefield by using deep learning. Through wavenumber analysis, we find that extrapolation per shot gather has broader applicability than per-trace extrapolation. We numerically simulate marine seismic surveys for random subsurface models and train a deep convolutional neural network to derive a mapping between high and low frequencies. The trained network is then tested on sections from the BP and SEAM Phase I benchmark models. Our results indicate that we are able to recover 0.25 Hz data from the 2 to 4.5 Hz frequencies. We also determine that the extrapolated data are accurate enough for FWI application.


1994 ◽  
Vol 195 (1) ◽  
pp. 329-343 ◽  
Author(s):  
G Ehret ◽  
E Keilwerth ◽  
T Kamada

Frequency-response curves of the tympanum and lateral body wall (lung area) were measured by laser Doppler vibrometry in three treefrog (Smilisca baudini, Hyla cinerea, Osteopilus septentrionalis) and four dendrobatid frog (Dendrobates tinctorius, D. histrionicus, Epipedobates tricolor, E. azureiventris) species. The high-frequency cut-off of the body wall response was always lower than that of the tympanum. The best response frequencies of the lateral body wall were lower than those of the tympanum in some species (S. baudini, O. septentrionalis, D. tinctorius), while in the others they were rather similar. Best tympanic frequencies and best body wall response frequencies tended to differ more with increasing body size. Stimulation of the tympanum by sound transfer through 3.14 mm2 areas of the lateral body wall showed that the lung-eardrum pathway can be in two states, depending on breathing activity within the lungs: 44% (in Smilisca), 39% (in Hyla) and 31% (in Osteopilus) of the eardrum vibrations were 2.5-8 times (8-18 dB) larger when the frogs were breathing with the lungs compared with non-breathing conditions. The vibration amplitudes of the tympanum and lateral body wall of the treefrogs followed the same dependence on sound intensity, only absolute amplitudes differed between species. Our results suggest that the lung-eardrum pathway attenuates high-frequency components of species-specific calls and enhances low-frequency components. In addition, an amplitude modulation is imposed on the low frequencies during the rhythm of breathing.


2009 ◽  
Vol 101 (3) ◽  
pp. 1560-1574 ◽  
Author(s):  
Cornelius Abel ◽  
Manfred Kössl

During auditory stimulation with several frequency components, distortion products (DPs) are generated as byproduct of nonlinear cochlear amplification. After generated, DP energy is reemitted into the ear channel where it can be measured as DP otoacoustic emission (DPOAE), and it also induces an excitatory response at cochlear places related to the DP frequencies. We measured responses of 91 inferior colliculus (IC) neurons in the gerbil during two-tone stimulation with frequencies well above the unit's receptive field but adequate to generate a distinct distortion product (f2-f1 or 2f1-f2) at the unit's characteristic frequency (CF). Neuronal responses to DPs could be accounted for by the simultaneously measured DPOAEs for DP frequencies >1.3 kHz. For DP frequencies <1.3 kHz ( n = 25), there was a discrepancy between intracochlear DP magnitude and DPOAE level, and most neurons responded as if the intracochlear DP level was significantly higher than the DPOAE level in the ear channel. In 12% of those low-frequency neurons, responses to the DPs could be elicited even if the stimulus tone levels were below the threshold level of the neuron at CF. High intracochlear f2-f1 and 2f1-f2 DP-levels were verified by cancellation of the neuronal DP response with a third phase-adjusted tone stimulus at the DP frequency. A frequency-specific reduction of middle ear gain at low frequencies is possibly involved in the reduction of DPOAE level. The results indicate that pitch-related properties of complex stimuli may be produced partially by high intracochlear f2-f1 distortion levels.


Behaviour ◽  
2011 ◽  
Vol 148 (9-10) ◽  
pp. 1103-1120 ◽  
Author(s):  
Luis Sandoval

AbstractMales singing within their territories can change their song characteristics in order to interact with conspecifics; males may respond to territorial intrusions by vocalizing, approaching the intruder and/or displaying. I studied male–male interactions by quantifying vocal and behavioural responses of male spot-bellied bobwhites (Colinus leucopogon) toward playback of conspecific male songs. Male responses toward playback song depended on the quality of the territorial male's song relative to the playback stimulus. In this species males who sang songs with higher peak and low frequency, longer song duration, and lower song rate were less responsive to simulated territorial intrusions. Spot-bellied bobwhite males that sang in response to the playback increased the low frequencies of their songs relative to pre-playback song, a vocal behaviour related to dominance in males of other species. Males that approached the speaker sang longer songs, a characteristic associated with increased aggression or motivation to fight in other bird species. The results of this playback experiment suggest that male spot-bellied bobwhite song characteristics according to playback characteristics predict response to territorial intrusions and may, therefore, play an important role in male–male interactions.


1997 ◽  
Vol 16 (4) ◽  
pp. 257-270 ◽  
Author(s):  
V.V. Krylov

Increase in speeds of modern railway trains is usually accompanied by higher levels of generated ground vibrations. In the author's earlier paper [V.V. Krylov, Applied Acoustics, 44, 149–164 (1995)], it has been shown that especially large increase in vibration level may occur if train speeds v exceed the velocity of Rayleigh surface waves in the ground cR., i.e., v > cR. Such a situation might arise, for example, with French TGV trains for which speeds over 515 km/h have been achieved. The present paper investigates the effect of geological layered structure of the ground on ground vibrations generated by high-speed trains. It is shown that, since Rayleigh wave velocities in layered ground are dispersive and normally increase at lower frequencies associated with deeper penetration of surface wave energy into the ground, the trans-Rayleigh condition v > cR may not hold at very low frequencies. This will cause a noticeable reduction in low-frequency components of generated ground vibration spectra. Theoretical results are illustrated by numerically calculated frequency spectra of ground vibrations generated by single axle loads travelling at different speeds and by TGV or Eurostar high-speed trains.


2021 ◽  
Vol 4 (2) ◽  
Author(s):  
Pavlo Olehovych Riabokon

This article analyzes how to control frequency response of a loudspeaker by changing the volume of its closed-box enclosure. The calculation is performed by the method of  Thiele-Small on the basic of a pre-calculated loudspeaker, the parameters of which are given in third section. This became possible because of the simplification of the circuit on figure 1 to the form of circuit on figure 2. This allowed us to consider it as a second order filter (presence of two reactive elements). Obtained results are compared with corresponding characteristics of open-box enclosure of the same loudspeaker, that was pre-calculated by the author too. Results are presented graphically in figure 3 and 4. As can be seen from them, the resonant frequency of the loudspeaker in the closed-box enclosure is higher than the resonant frequency of the loudspeaker in the open box. The result in the form of a ratio  is listed in table 2. Analyzing the obtained data, it can be noticed that with the change of the internal volume of the closed box (and hence its total quality factor), it is possible to affect both the resonance frequency and the peak amplitude values in these frequencies by changing the FR. The result shown in figure 3 and 4 is achieved by taking into account effect of radiation only on the one side of the driver (in the case of open-box enclosure). Closed box was calculating by taking into account both sides radiation of the driver. Shifting the resonance frequency of the system towards higher frequencies and increasing the sound pressure on the resonance generally worsens the FR of the loudspeaker (reduces the reproduction of low-frequency components of sound and increases the unevenness of the frequency). However, certain variants of this group of frequency characteristics may be useful depending on the reproducible frequency range and need of emphasize the low-frequency components (for example, in rock music). If you need a smoothed low-frequency sound, it is appropriate to use systems with low overall quality and increased internal volume or open-box enclosure. Therefore, the volume of the closed-box enclosure significantly affects the resonant frequency and the shape of the frequency response of the loudspeaker. Reducing the volume of the enclosure of the loudspeaker leads to a decrease in its frequency range due to low frequencies and at the same time increase in the unevenness of the frequency response. The change in the resonant frequency of the system as the volume of the closed-box enclosure decreases, the less the volume of the closed-box.


Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. R385-R400
Author(s):  
Luca Bianchin ◽  
Emanuele Forte ◽  
Michele Pipan

Low-frequency components of reflection seismic data are of paramount importance for acoustic impedance (AI) inversion, but they typically suffer from a poor signal-to-noise ratio. The estimation of the low frequencies of AI can benefit from the combination of a harmonic reconstruction method (based on autoregressive [AR] models) and a seismic-derived interval velocity field. We have developed the construction of a convex cost function that accounts for the velocity field, together with geologic a priori information on AI and its uncertainty, during the AR reconstruction of the low frequencies. The minimization of this function allows one to reconstruct sensible estimates of low-frequency components of the subsurface reflectivity, which lead to an estimation of AI model via a recursive formulation. In particular, the method is suited for an initial and computationally inexpensive assessment of the absolute value of AI even when no well-log data are available. We first tested the method on layered synthetic models, then we analyzed its applicability and limitations on a real marine seismic data set that included tomographic velocity information. Despite a strong trace-to-trace variability in the results, which could partially be mitigated by multitrace inversion, the method demonstrates its capability to highlight lateral variations of AI that cannot be detected when the low frequencies only come from well-log information.


Author(s):  
Bernhard Manhartsgruber

Bent axis hydraulic pumps and motors are extremely popular due to their high efficiency and large speed range. A number of different concepts exist with respect to kinematic restraints on the cylinder barrel motion. Some manufacturers rely upon a timing gear for precise synchronization of the shaft and barrel speeds while other companies have successfully introduced bent axis units without such a mechanism. The paper analyses the dynamics of bent axis machines with tapered pistons driving the cylinder barrel. A rotation of the pistons inside the corresponding bores is proposed to result in changing cylinder chamber to case drain leakages. The reported phenomenon is shown to have a significant effect on the low frequency part of pressure and flow pulsations. In this way, frequency components far below the fundamental frequency associated with the shaft revolution are generated.


1983 ◽  
Vol 245 (4) ◽  
pp. G470-G475 ◽  
Author(s):  
E. J. van der Schee ◽  
J. L. Grashuis

Interdigestive gastric contraction-related phenomena were studied in four healthy conscious dogs by running-spectrum analysis of signals derived from the abdominal surface. When groups of contractions occur irregularly spaced in time, low frequencies (in the range below 0.085 Hz) show up in the power spectra of the electrogastrograms. It has been hypothesized that prolonged electrical control activity (ECA) intervals shown to coincide with irregular contractions are related in some way to these low frequencies. This hypothesis was investigated in detail. Whereas a certain degree of correlation was demonstrated between ECA interval variations, contractile activity, and the presence of low frequencies in the spectra obtained from electrogastrograms recorded during interdigestive migrating complexes, a more pronounced correlation between these phenomena was found during "minute rhythms." It was concluded that the presence of lower frequencies ranging from the normal gastric one to about 0.01 Hz in the running-spectrum representation of electrogastrograms recorded in fasting dogs is indicative of strong antral contractions and that the mechanism through which this is brought about involves prolongation of ECA intervals associated with these contractions.


Sign in / Sign up

Export Citation Format

Share Document