scholarly journals Potential of rice straw biochar, sulfur and ryegrass (Lolium perenne L.) in remediating soil contaminated with nickel through irrigation with untreated wastewater

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9267 ◽  
Author(s):  
Inas A. Hashem ◽  
Aonalah Y. Abbas ◽  
Abo El-Nasr H. Abd El-Hamed ◽  
Haythum M.S. Salem ◽  
Omr E.M. El-hosseiny ◽  
...  

Background Untreated wastewater carries substantial amount of heavy metals and causes potential ecological risks to the environment, food quality, soil health and sustainable agriculture. Methodology In order to reduce the incidence of nickel (Ni2+) contamination in soils, two separate experiments (incubation and greenhouse) were conducted to investigate the potentials of rice straw biochar and elemental sulfur in remediating Ni2+ polluted soil due to the irrigation with wastewater. Five incubation periods (1, 7, 14, 28 and 56 days), three biochar doses (0, 10 and 20 g kg−1 of soil) and two doses of sulfur (0 and 5 g kg−1 of soil) were used in the incubation experiment then the Ni2+ was extracted from the soil and analyzed, while ryegrass seeds Lolium perenne L. (Poales: Poaceae) and the same doses of biochar and sulfur were used in the greenhouse experiment then the plants Ni2+-uptake was determined. Results The results of the incubation experiment revealed a dose-dependent reduction of DTPA-extractable Ni2+ in soils treated with biochar. Increasing the biochar dose from 0 g kg−1 (control) to 10 or 20 g kg−1 (treatments) decreased the DTPA-extractable Ni2+ from the soil by 24.6% and 39.4%, respectively. The application of sulfur increased the Ni2+-uptake by ryegrass plant which was used as hyper-accumulator of heavy metals in the green house experiment. However, the biochar decreased the Ni2+-uptake by the plant therefore it can be used as animal feed. Conclusions These results indicate that the biochar and sulfur could be applied separately to remediate the Ni2+-contaminated soils either through adsorbing the Ni2+ by biochar or increasing the Ni2+ availability by sulfur to be easily uptaken by the hyper-accumulator plant, and hence promote a sustainable agriculture.

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3360
Author(s):  
Mahrous Awad ◽  
M. A. El-Desoky ◽  
A. Ghallab ◽  
Jan Kubes ◽  
S. E. Abdel-Mawly ◽  
...  

Accumulation of heavy metals (HMs) by ornamental plants (OPs) from contaminated agriculture soils is a unique technique that can efficiently reduce the metal load in the food chain. Amaranthus tricolor L. has attractive characteristics acquiring a higher growth rate and large biomass when grown at heavy metal contaminated soils. Site-specific detailed information is not available on the use of A. tricolor plant in metal phytoremediation from the polluted sites. The study aimed to enhance the uptake of HMs (Pb, Zn, and Cu) via amending poultry litter extract (PLE), vinasse sugarcane (VSC), and humic acid (HA) as natural mobilized organic materials compared to ethylene diamine tetraacetic acid (EDTA), as a common mobilized chemical agent by A. tricolor plant. The studied soils collected from Helwan, El-Gabal El-Asfar (Cairo Governorate), Arab El-Madabeg (Assiut Governorate), Egypt, and study have been conducted under pot condition. Our results revealed all organic materials in all studied soils, except EDTA in EL-Gabal El-Asfar soil, significantly increased the dry weight of the A. tricolor plant compared to the control treatment. The uptake of Pb and Zn significantly (p > 0.05) increased due to applying all organic materials to the studied soils. HA application caused the highest uptake as shown in Pb concentration by more than 5 times in Helwan soil and EDTA by 65% in El-Gabal El-Asfar soil while VSC increased it by 110% in El-Madabeg soil. Also, an increase in Zn concentration due to EDTA application was 58, 42, and 56% for Helwan, El-Gabal El-Asfar, and El-Madabeg soil, respectively. In all studied soils, the application of organic materials increased the remediation factor (RF) than the control. El-Madabeg soil treated with vinasse sugarcane gave the highest RF values; 6.40, 3.26, and 4.02% for Pb, Zn, and Cu, respectively, than the control. Thus, we identified A. tricolor as a successful ornamental candidate that, along with organic mobilization amendments, most efficiently develop soil health, reduce metal toxicity, and recommend remediation of heavy metal-contaminated soils. Additionally, long-term application of organic mobilization amendments and continued growth of A. tricolor under field conditions could be recommended for future directions to confirm the results.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muhammad Irfan ◽  
Muhammad Mudassir ◽  
Muhammad Jamal Khan ◽  
Khadim Muhammad Dawar ◽  
Dost Muhammad ◽  
...  

AbstractSoil with heavy metals contamination, mainly lead (Pb), cadmium (Cd), and chromium (Cr) is a progressively worldwide alarming environmental problem. Recently, biochar has been used as a soil amendment to remediate contaminated soils, but little work has been done to compare with other organic amendments like compost. We investigated biochar and compost's comparative effect on Pb, Cd, and Cr immobilization in soil, photosynthesis, and growth of maize plants. Ten kg soil was placed in pots and were spiked with Pb, Cd, and Cr at concentrations 20, 10, 20 mg kg−1. The biochar and compost treatments included 0, 0.5, 1, 2, and 4% were separately applied to the soil. The crop from pots was harvested after 60 days. The results show that the highest reduction of AB-DTPA extractable Pb, Cd, and Cr in soil was 79%, 61% and 78% with 4% biochar, followed by 61%, 43% and 60% with 4% compost compared to the control, respectively. Similarly, the highest reduction in shoot Pb, Cd, and Cr concentration was 71%, 63% and 78%with 4% biochar, followed by 50%, 50% and 71% with 4% compost than the control, respectively. The maximum increase in shoot and dry root weight, total chlorophyll contents, and gas exchange characteristics were recorded with 4% biochar, followed by 4% compost than the control. The maximum increase in soil organic matter and total nitrogen (N) was recorded at 4% biochar application while available phosphorus and potassium in the soil at 4% compost application. It is concluded that both biochar and compost decreased heavy metals availability in the soil, reducing toxicity in the plant. However, biochar was most effective in reducing heavy metals content in soil and plant compared to compost. In the future, more low-cost, eco-friendly soil remediation methods should be developed for better soil health and plant productivity.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Goitom Kfle ◽  
Ghebray Asgedom ◽  
Tedros Goje ◽  
Felema Abbebe ◽  
Lula Habtom ◽  
...  

Soils irrigated with wastewater are by and large contaminated with heavy metals, and consumption of vegetables and animal feed grasses grown in contaminated soils have been a major food chain route for human exposure and pose a health hazard. A study was conducted in three sites to assess the accumulation of heavy metals in farms irrigated with wastewater between two and five decades in and around Asmara, Eritrea. The concentrations of metals (Al, Cd, Co, Cr, Cu, Fe, Mn, Mo, Pb, V, and Zn) in soils and plants (Medicago sativa L., Avena sativa L., Cynodon dactylon L., Corchorus olitorius L., and Cynara scholymus L.) grown in the farms were analyzed using an inductively coupled plasma optical emission spectrophotometer (ICP-OES). Multivariate analysis, such as principal component analysis (PCA) and cluster analysis (CA), was performed on the distribution of elements in plant species to identify the source of the heavy metals. The level of the metals in the soil samples was in the order of Mo < Cd < Co < Cu < Pb < V < Cr ≈ Zn < Mn < Fe < Al. The order of the metals in the plants of the different sites has been, in general, Cd < Co < V < Cr < Pb < Cu < Zn < Mn < Al < Fe. The study revealed that the soil samples of the studied sites were unsafe for agricultural purposes with respect to Fe, Mn, and Pb except for Pb in the case of the soil sample from the Kushet area. The levels of most of the studied heavy metals in the vegetation samples from all the sites were found within the FAO/WHO permissible limit. Al and Fe exceeded the FAO/WHO permissible limit with the exception of all plant samples from the Kushet area and M. sativa from Paradizo. The concentration of Al was also below the limit in C. dactylon from Adi-Segdo and Paradizo. Of the five vegetation considered in this study, C. olitorius was found to be a good accumulator and C. dactylon, the lowest accumulator of heavy metals. Based on the results of this study, the grass species C. olitorius should be further investigated for its phytoremediation capability of contaminated soils. The results of the multivariate analysis revealed that Fe, V, Al, Cr, Co, and Pb were controlled by mixed (natural and anthropogenic) sources and Zn, Mo, Cu, Mn, and Cd originated from the anthropogenic source. Very limited and inadequate studies were conducted on the accumulation of heavy metals in plants grown in wastewater irrigated farms around Asmara. Therefore, the results of this study are expected to shed light on the understanding of the community and enable the City Council to monitor the environmental quality and take appropriate actions.


Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 790 ◽  
Author(s):  
Mahmoud F. Seleiman ◽  
Majed A. Alotaibi ◽  
Bushra Ahmed Alhammad ◽  
Basmah M. Alharbi ◽  
Yahya Refay ◽  
...  

Contaminated soils can cause a potential risk into the health of the environment and soil as well as the quality and productivity of plants. The objectives of our study were to investigate the integrative advantageous effects of foliar ZnO nanoparticles (NPs) (60 mg Zn NPs L−1), rice straw biochar (RSB; 8.0 t ha−1), cow-manure biochar (CMB, 8.0 t ha−1), and a combination thereof (50% of each) on sunflowers grown in agricultural land irrigated with polluted wastewater for the long term (≈50 years). The availability of heavy metals (HMs) in soil, HMs accumulation in whole biomass aboveground, growth, productivity, and quality characteristics of the sunflower were investigated. The combination treatment significantly minimized the availability of HMs in soil, and, consequently, substantially lessened the uptake of HMs by the sunflower, compared to treatments of ZnO NPs and control (i.e., untreated soil). The application of the combination treatment reduced the availability of Pb, Cr, Cu, and Cd in the soil by 78.6%, 115.3%, 153.3%, and 178.5% in comparison to untreated plots post-harvest, respectively. Compared to untreated plots, it also reduced the Pb, Cr, Cu, and Cd in plant biomass by 1.13, 5.19, 3.88, and 0.26 mg kg−1 DM, respectively. Furthermore, combination treatment followed by biochar as an individual application caused a significant improvement in sunflower productivity and quality in comparison to untreated soil. For instance, seed yield ha−1, 100-seed weight, and number of seeds per head obtained from the combination treatment was greater than the results obtained from the untreated plots by 42.6%, 47.0%, and 50.4%, respectively. In summary, the combined treatment of NPs and both RSB and CMB is recommended as a result of their positive influence on sunflower oil quality and yield as well as on minimizing the negative influences of HMs.


2021 ◽  
Vol 771 ◽  
pp. 144764
Author(s):  
Isha Medha ◽  
Subhash Chandra ◽  
Kumar Raja Vanapalli ◽  
Biswajit Samal ◽  
Jayanta Bhattacharya ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Javed Hussain ◽  
Xiao Wei ◽  
Luo Xue-Gang ◽  
Syed Rehmat Ullah Shah ◽  
Muhammad Aslam ◽  
...  

AbstractHeavy metals are naturally occurring elements that have a high atomic weight and let out in the environment by agriculture, industry, mining and therapeutic expertise and thrilling amassing of these elements pollutes the environment. In this study we have investigated the potential of garlic interplanting in promoting hyper accumulation and absorption of heavy metals to provide a basis for phytoremediation of polluted land. Monoculture and inter-plantation of garlic were conducted to investigate the absorption of cadmium and lead contamination in the land. A group of experiments with single planting (monoculture) of Lolium perenne, Conyza canadensis and Pteris vittata as accumulators were used. The results have shown that garlic has a potential as a hyper accumulate and absorb heavy metals. It was found that the accumulation of Cd and Pb was much higher with inter-planting. Garlic boosts up the absorption of heavy metals in Lolium perenne of Cd 66% and Pb 44% respectively. The Inter-planting of garlic with Pteris vittata promotes the Cd 26% and Pb 15%. While the maximum accumulation of Lead 87% and Cadmium 77% occurred in Conyza canadensis herb plant. The bacterial diversity in the soil was analyzed for each experimental soil and was found that the Proteobacteria, Acidobacteria, Actinobacteria, Firmicutes, and Planctomycetes were commonly abundant in both single planting (monoculture) of ryegrass and interplanting ryegrass with garlic habitats. Variances were observed in the bacterial floral composition of single (monoculture) and intercropping (interplant) soils. Relative abundance of bacterial taxa revealed that the proportion of Proteobacteria, Acidobacteria, and Actinobacteria in the inter-planting group was slightly higher, while Firmicutes and Planctomycetes were low. This study provides the evidence to control the heavy metals contaminated soils with weed species. Growth promotion and heavy metal uptake of neighboring plants proved the specific plant-plant and plant-microbial associations with garlic plants. This inter-planting strategy can be used to improve heavy metal absorption.


Sign in / Sign up

Export Citation Format

Share Document