scholarly journals Effects of ZnO Nanoparticles and Biochar of Rice Straw and Cow Manure on Characteristics of Contaminated Soil and Sunflower Productivity, Oil Quality, and Heavy Metals Uptake

Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 790 ◽  
Author(s):  
Mahmoud F. Seleiman ◽  
Majed A. Alotaibi ◽  
Bushra Ahmed Alhammad ◽  
Basmah M. Alharbi ◽  
Yahya Refay ◽  
...  

Contaminated soils can cause a potential risk into the health of the environment and soil as well as the quality and productivity of plants. The objectives of our study were to investigate the integrative advantageous effects of foliar ZnO nanoparticles (NPs) (60 mg Zn NPs L−1), rice straw biochar (RSB; 8.0 t ha−1), cow-manure biochar (CMB, 8.0 t ha−1), and a combination thereof (50% of each) on sunflowers grown in agricultural land irrigated with polluted wastewater for the long term (≈50 years). The availability of heavy metals (HMs) in soil, HMs accumulation in whole biomass aboveground, growth, productivity, and quality characteristics of the sunflower were investigated. The combination treatment significantly minimized the availability of HMs in soil, and, consequently, substantially lessened the uptake of HMs by the sunflower, compared to treatments of ZnO NPs and control (i.e., untreated soil). The application of the combination treatment reduced the availability of Pb, Cr, Cu, and Cd in the soil by 78.6%, 115.3%, 153.3%, and 178.5% in comparison to untreated plots post-harvest, respectively. Compared to untreated plots, it also reduced the Pb, Cr, Cu, and Cd in plant biomass by 1.13, 5.19, 3.88, and 0.26 mg kg−1 DM, respectively. Furthermore, combination treatment followed by biochar as an individual application caused a significant improvement in sunflower productivity and quality in comparison to untreated soil. For instance, seed yield ha−1, 100-seed weight, and number of seeds per head obtained from the combination treatment was greater than the results obtained from the untreated plots by 42.6%, 47.0%, and 50.4%, respectively. In summary, the combined treatment of NPs and both RSB and CMB is recommended as a result of their positive influence on sunflower oil quality and yield as well as on minimizing the negative influences of HMs.

2018 ◽  
Vol 26 (1) ◽  
pp. 105-122 ◽  
Author(s):  
Mensur Kelmendi ◽  
Milaim Sadiku ◽  
Sadija Kadriu ◽  
Florent Dobroshi ◽  
Liridona Igrishta ◽  
...  

Abstract For the first time, a survey about agricultural land focusing on the partitioning of the Pb, Cd, and Zn to the rural part of Mitrovica in northern Kosovo was made. Kosovo’s Mitrovica is one of the main industrial sites in the former Yugoslavia and a world-class mining district in Europe. The process of obtaining metals dates since 1927. From this year until 2000, the technological process of acquisition/obtaining has been accompanied by environmental pollution by creating waste landfills. These landfills are located on the outskirts of the city of Mitrovica at a distance from 1 to 4 km. In this area high levels of heavy metals in air, water, and earth were noticed. Therefore, these metal residues have a particular impact on air, earth, water, and effects on plants, animals and humans health. This situation became alarming; therefore in 2000 the production process was discontinued. During the period from 2000 to the present day, there is noticed a change of nature. Residents of the area have begun to work on agricultural lands without realizing the potential risk coming up. Despite the stagnation of industrial production, environmental pollution continues even further, especially from the landfill generated by industrial wastes. Widespread and very visible contamination mainly from Pb, Zn, Cd were found on the ground, with the highest concentrations measured near the Zveçan smelter. A significant amount of Cd, Pb, and Zn in contaminated soils/ground was quite movable/changeable, suggesting that these elements may be readily available for plants and soil/ground organisms. The main objective of this work is to address this pollution and take measures for education and information.


Agronomy ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 637 ◽  
Author(s):  
Seleiman ◽  
Refay ◽  
Al-Suhaibani ◽  
Al-Ashkar ◽  
El-Hendawy ◽  
...  

Water deficit stress can negatively affect oil quality, crop yields and soil infertility. Thus, we investigated the effects of rice-straw biochar, foliar silicon and their combination on quality, yield and physiological traits of sunflower grown under three water deficit stress treatments. Water stress treatments were 50% (WS0; no stress), 70% (WS1; moderate stress) and 90% (WS2; severe stress) depletion of the available soil moisture. The results showed that WS1 and WS2 negatively affected oil quality, mycorrhizal spores, yield and physiological traits of the sunflower; however, biochar, silicon and their combination significantly (p ≤ 0.05) improved most of those traits. Oil and oleic acid contents of sunflower grown under WS2 were decreased by 18% and 25.8% compared to those grown under WS0, respectively. Nevertheless, the biochar and silicon combination resulted in higher oil (10.2%) and oleic acid (12.2%) in plants grown under WS2 than those grown in untreated plots. Also, a significant increase (182% and 277%) in mycorrhizal spores was obtained in soil treated combination of biochar and silicon under WS1 and WS2 in comparison to untreated soil, respectively. On the other hand, plants grown under WS1 and WS2 exhibited reduced seed yield ha−1 by 16.5% and 53.5% compared to those grown under WS0, respectively. However, seed yield ha−1 were increased by 26.8% and 27.1% in plots treated with combined treatment compared to untreated plants, respectively. In addition, the biochar and silicon combination significantly increased stomatal conductance by 21.4% and 12.1%, reduced proline by 56.6% and 51.2% and reduced catalase activity by 13.4% and 17.3% under WS1 and WS2 compared to those grown in untreated plots, respectively. Therefore, the combined treatment of biochar and silicon can minimize and alleviate the negative effects of WS1 and WS2, improve oil quality, physiological traits, microbial activity and seed yield ha−1in sunflower plants.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9267 ◽  
Author(s):  
Inas A. Hashem ◽  
Aonalah Y. Abbas ◽  
Abo El-Nasr H. Abd El-Hamed ◽  
Haythum M.S. Salem ◽  
Omr E.M. El-hosseiny ◽  
...  

Background Untreated wastewater carries substantial amount of heavy metals and causes potential ecological risks to the environment, food quality, soil health and sustainable agriculture. Methodology In order to reduce the incidence of nickel (Ni2+) contamination in soils, two separate experiments (incubation and greenhouse) were conducted to investigate the potentials of rice straw biochar and elemental sulfur in remediating Ni2+ polluted soil due to the irrigation with wastewater. Five incubation periods (1, 7, 14, 28 and 56 days), three biochar doses (0, 10 and 20 g kg−1 of soil) and two doses of sulfur (0 and 5 g kg−1 of soil) were used in the incubation experiment then the Ni2+ was extracted from the soil and analyzed, while ryegrass seeds Lolium perenne L. (Poales: Poaceae) and the same doses of biochar and sulfur were used in the greenhouse experiment then the plants Ni2+-uptake was determined. Results The results of the incubation experiment revealed a dose-dependent reduction of DTPA-extractable Ni2+ in soils treated with biochar. Increasing the biochar dose from 0 g kg−1 (control) to 10 or 20 g kg−1 (treatments) decreased the DTPA-extractable Ni2+ from the soil by 24.6% and 39.4%, respectively. The application of sulfur increased the Ni2+-uptake by ryegrass plant which was used as hyper-accumulator of heavy metals in the green house experiment. However, the biochar decreased the Ni2+-uptake by the plant therefore it can be used as animal feed. Conclusions These results indicate that the biochar and sulfur could be applied separately to remediate the Ni2+-contaminated soils either through adsorbing the Ni2+ by biochar or increasing the Ni2+ availability by sulfur to be easily uptaken by the hyper-accumulator plant, and hence promote a sustainable agriculture.


2020 ◽  
Vol 57 (2) ◽  
pp. 109-114
Author(s):  
Amirhossein Dolatzadeh khiyavi ◽  
Reza Hajimohammadi ◽  
Hossein Amani ◽  
Hadi Soltani

2021 ◽  
Vol 11 (15) ◽  
pp. 7099
Author(s):  
Inkyeong Moon ◽  
Honghyun Kim ◽  
Sangjo Jeong ◽  
Hyungjin Choi ◽  
Jungtae Park ◽  
...  

In this study, the geochemical properties of heavy metal-contaminated soils from a Korean military shooting range were analyzed. The chemical behavior of heavy metals was determined by analyzing the soil pH, heavy metal concentration, mineral composition, and Pb isotopes. In total, 24 soil samples were collected from a Korean military shooting range. The soil samples consist of quartz, albite, microcline, muscovite/illite, kaolinite, chlorite, and calcite. Lead minerals, such as hydrocerussite and anglesite, which are indicative of a transformation into secondary mineral phases, were not observed. All soils were strongly contaminated with Pb with minor concentrations of Cu, Ni, Cd, and Zn. Arsenic was rarely detected. The obtained results are indicated that the soils from the shooting range are contaminated with heavy metals and have evidences of different degree of anthropogenic Pb sources. This study is crucial for the evaluation of heavy metal-contaminated soils in shooting ranges and their environmental effect as well as for the establishment of management strategies for the mitigation of environmental risks.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Gabriela Carrasco-Torres ◽  
Rafael Baltiérrez-Hoyos ◽  
Erik Andrade-Jorge ◽  
Saúl Villa-Treviño ◽  
José Guadalupe Trujillo-Ferrara ◽  
...  

The inflammatory condition of malignant tumors continually exposes cancer cells to reactive oxygen species, an oxidizing condition that leads to the activation of the antioxidant defense system. A similar activation occurs with glutathione production. This oxidant condition enables tumor cells to maintain the energy required for growth, proliferation, and evasion of cell death. The objective of the present study was to determine the effect on hepatocellular carcinoma cells of a combination treatment with maleic anhydride derivatives (prooxidants) and quercetin (an antioxidant). The results show that the combination of a prooxidant/antioxidant had a cytotoxic effect on HuH7 and HepG2 liver cancer cells, but not on either of two normal human epithelial cell lines or on primary hepatocytes. The combination treatment triggered apoptosis in hepatocellular carcinoma cells by activating the intrinsic pathway and causing S phase arrest during cell cycle progression. There is also clear evidence of a modification in cytoskeletal actin and nucleus morphology at 24 and 48 h posttreatment. Thus, the current data suggest that the combination of two anticarcinogenic drugs, a prooxidant followed by an antioxidant, can be further explored for antitumor potential as a new treatment strategy.


Author(s):  
Yujuan Gao ◽  
Jianli Jia ◽  
Beidou Xi ◽  
Dongyu Cui ◽  
Wenbing Tan

The heavy metal pollution induced by agricultural land use change has attracted great attention. In this study, the divergent response of bioavailability of heavy metals in rhizosphere soil to different...


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 448
Author(s):  
Mahrous Awad ◽  
Zhongzhen Liu ◽  
Milan Skalicky ◽  
Eldessoky S. Dessoky ◽  
Marian Brestic ◽  
...  

Heavy metals (HMs) toxicity represents a global problem depending on the soil environment’s geochemical forms. Biochar addition safely reduces HMs mobile forms, thus, reducing their toxicity to plants. While several studies have shown that biochar could significantly stabilize HMs in contaminated soils, the study of the relationship of soil properties to potential mechanisms still needs further clarification; hence the importance of assessing a naturally contaminated soil amended, in this case with Paulownia biochar (PB) and Bamboo biochar (BB) to fractionate Pb, Cd, Zn, and Cu using short sequential fractionation plans. The relationship of soil pH and organic matter and its effect on the redistribution of these metals were estimated. The results indicated that the acid-soluble metals decreased while the fraction bound to organic matter increased compared to untreated pots. The increase in the organic matter metal-bound was mostly at the expense of the decrease in the acid extractable and Fe/Mn bound ones. The highest application of PB increased the organically bound fraction of Pb, Cd, Zn, and Cu (62, 61, 34, and 61%, respectively), while the BB increased them (61, 49, 42, and 22%, respectively) over the control. Meanwhile, Fe/Mn oxides bound represents the large portion associated with zinc and copper. Concerning soil organic matter (SOM) and soil pH, as potential tools to reduce the risk of the target metals, a significant positive correlation was observed with acid-soluble extractable metal, while a negative correlation was obtained with organic matter-bound metal. The principal component analysis (PCA) shows that the total variance represents 89.7% for the TCPL-extractable and HMs forms and their relation to pH and SOM, which confirms the positive effect of the pH and SOM under PB and BB treatments on reducing the risk of the studied metals. The mobility and bioavailability of these metals and their geochemical forms widely varied according to pH, soil organic matter, biochar types, and application rates. As an environmentally friendly and economical material, biochar emphasizes its importance as a tool that makes the soil more suitable for safe cultivation in the short term and its long-term sustainability. This study proves that it reduces the mobility of HMs, their environmental risks and contributes to food safety. It also confirms that performing more controlled experiments, such as a pot, is a disciplined and effective way to assess the suitability of different types of biochar as soil modifications to restore HMs contaminated soil via controlling the mobilization of these minerals.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2561
Author(s):  
Furqan Muhayodin ◽  
Albrecht Fritze ◽  
Oliver Christopher Larsen ◽  
Marcel Spahr ◽  
Vera Susanne Rotter

Rice straw is an agricultural residue produced in abundant quantities. Open burning and plowing back the straw to the fields are common practices for its disposal. In-situ incorporation and burning cause emissions of greenhouse gas and particulate matter. Additionally, the energy potential of rice straw is lost. Anaerobic digestion is a technology that can be potentially used to utilize the surplus rice straw, provide renewable energy, circulate nutrients available in the digestate, and reduce greenhouse gas emissions from rice paddies. An innovative temperature phased anaerobic digestion technology was developed and carried out in a continuous circulating mode of mesophilic and hyperthermophilic conditions in a loop digester (F1). The performance of the newly developed digester was compared with the reference digester (F2) working at mesophilic conditions. Co-digestion of rice straw was carried out with cow manure to optimize the carbon to nitrogen ratio and to provide the essential trace elements required by microorganisms in the biochemistry of methane formation. F1 produced a higher specific methane yield (189 ± 37 L/kg volatile solids) from rice straw compared to F2 (148 ± 36 L/kg volatile solids). Anaerobic digestion efficiency was about 90 ± 20% in F1 and 70 ± 20% in F2. Mass fractions of Fe, Ni, Co, Mo, Cu, and Zn were analyzed over time. The mass fractions of Co, Mo, Cu, and Zn were stable in both digesters. While mass fractions of Fe and Ni were reduced at the end of the digestion period. However, no direct relationship between specific methane yield and reduced mass fraction of Fe and Ni was found. Co-digestion of rice straw with cow manure seems to be a good approach to provide trace elements except for Se.


Sign in / Sign up

Export Citation Format

Share Document