scholarly journals An RNA-sequencing-based transcriptome for a significantly prognostic novel driver signature identification in bladder urothelial carcinoma

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9422
Author(s):  
Danqi Liu ◽  
Boting Zhou ◽  
Rangru Liu

Bladder cancer (BC) is the ninth most common malignancy worldwide. Bladder urothelial carcinoma (BLCA) constitutes more than 90% of bladder cancer (BC). The five-year survival rate is 5–70%, and patients with BLCA have a poor clinical outcome. The identification of novel clinical molecular markers in BLCA is still urgent to allow for predicting clinical outcomes. This study aimed to identify a novel signature integrating the three-dimension transcriptome of protein coding genes, long non-coding RNAs, microRNAs that is related to the overall survival of patients with BLCA, contributing to earlier prediction and effective treatment selection, as well as to the verification of the established model in the subtypes identified. Gene expression profiling and the clinical information of 400 patients diagnosed with BLCA were retrieved from The Cancer Genome Atlas (TCGA) database. A univariate Cox regression analysis, robust likelihood-based survival modelling analysis and random forests for survival regression and classification algorithms were used to identify the critical biomarkers. A multivariate Cox regression analysis was utilized to construct a risk score formula with a maximum area under the curve (AUC = 0.7669 in the training set). The significant signature could classify patients into high-risk and low-risk groups with significant differences in overall survival time. Similar results were confirmed in the test set (AUC = 0.645) and in the entire set (AUC = 0.710). The multivariate Cox regression analysis indicated that the five-RNA signature was an independent predictive factor for patients with BLCA. Non-negative matrix factorization and a similarity network fusion algorithm were applied for identifying three molecular subtypes. The signature could separate patients in every subtype into high- and low- groups with a distinct difference. Gene set variation analysis of protein-coding genes associated with the five prognostic RNAs demonstrated that the co-expressed protein-coding genes were involved in the pathways and biological process of tumourigenesis. The five-RNA signature could serve as to some degree a reliable independent signature for predicting outcome in patients with BLCA.

2021 ◽  
Vol 11 ◽  
Author(s):  
Xiaoqi Li ◽  
Junting Huang ◽  
Ji Chen ◽  
Yating Zhan ◽  
Rongrong Zhang ◽  
...  

Bladder Urothelial Carcinoma (BLCA) is the major subtype of bladder cancer, and the prognosis prediction of BLCA is difficult. Ferroptosis is a newly discovered iron-dependent cell death pathway. However, the clinical value of ferroptosis-related genes (FRGs) on the prediction of BLCA prognosis is still uncertain. In this study, we aimed to construct a novel prognostic signature to improve the prognosis prediction of advanced BLCA based on FRGs. In the TCGA cohort, we identified 23 differentially expressed genes (DEGs) associated with overall survival (OS) via univariate Cox analysis (all P < 0.05). 8 optimal DEGs were finally screened to generate the prognostic risk signature through LASSO regression analysis. Patients were divided into two risk groups based on the median risk score. Survival analyses revealed that the OS rate in the high-risk group was significantly lower than that in the low-risk group. Moreover, the risk score was determined as an independent predictor of OS by the multivariate Cox regression analysis (Hazard ratio > 1, 95% CI = 1.724-2.943, P < 0.05). Many potential ferroptosis-related pathways were identified in the enrichment analysis in BLCA. With the aid of an external FAHWMU cohort (n = 180), the clinical predication value of the signature was further verified. In conclusion, the prognosis of advanced BLCA could be accurately predicted by this novel FRG-signature.


Biology ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 375
Author(s):  
Chaoting Zhou ◽  
Alex Heng Li ◽  
Shan Liu ◽  
Hong Sun

Background: Survival rates for highly invasive bladder cancer (BC) patients have been very low, with a 5-year survival rate of 6%. Accurate prediction of tumor progression and survival is important for diagnosis and therapeutic decisions for BC patients. Our study aims to develop an autophagy-related-gene (ARG) signature that helps to predict the survival of BC patients. Methods: RNA-seq data of 403 BC patients were retrieved from The Cancer Genome Atlas Urothelial Bladder Carcinoma (TCGA-BLCA) database. Univariate Cox regression analysis was performed to identify overall survival (OS)-related ARGs. The Lasso Cox regression model was applied to establish an ARG signature in the TCGA training cohort (N = 203). The performance of the 11-gene ARG signature was further evaluated in a training cohort and an independent validation cohort (N = 200) using Kaplan-Meier OS curve analysis, receiver operating characteristic (ROC) analysis, as well as univariate and multivariate Cox regression analysis. Results: Our study identified an 11-gene ARG signature that is significantly associated with OS, including APOL1, ATG4B, BAG1, CASP3, DRAM1, ITGA3, KLHL24, P4HB, PRKCD, ULK2, and WDR45. The ARGs-derived high-risk bladder cancer patients exhibited significantly poor OS in both training and validation cohorts. The prognostic model showed good predictive efficacy, with the area under the ROC curve (AUCs) for 1-year, 3-year, and 5-year overall survival of 0.702 (0.695), 0.744 (0.640), and 0.794 (0.658) in the training and validation cohorts, respectively. A prognostic nomogram, which included the ARGs-derived risk factor, age and stage for eventual clinical translation, was established. Conclusion: We identified a novel ARG signature for risk-stratification and robust prediction of overall survival for BC patients.


2018 ◽  
Vol 79 (06) ◽  
pp. 471-478 ◽  
Author(s):  
Bingxi Lei ◽  
Lei Yu ◽  
Thapa Jung ◽  
Yuefei Deng ◽  
Wei Xiang ◽  
...  

Objective To analyze the long noncoding RNA (lncRNA) expression profile of glioblastoma multiforme (GBM) and identify prognosis-related lncRNAs, as well as their related protein-coding genes and functions. Method The lncRNA expression profiles were obtained by microarray in six samples each of GBM and normal brain tissue. The lncRNAs expressed were significantly different between the two groups and used to detect their associations with patient survival time by downloading the related data from The Cancer Genome Atlas (TCGA). The total RNA-sequencing data of 152 patients diagnosed GBM level 3 with complete clinic information was downloaded. The survival time–dependent lncRNAs were identified by multivariate Cox regression analysis. For the survival time–dependent lncRNAs, we used the Pearson correlation coefficient and z test to search their associated protein-coding genes downloaded from TCGA. Functions of these genes were annotated by the Database for Annotation, Visualization, and Integrated Discovery (DAVID) for gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Results More than 1,000 antisense lncRNAs and enhancer lncRNAs were selected for analysis in this study. Data from 152 cases with RNA-seq of GBM level 3 with complete information on GBM were downloaded from the TCGA database. Univariate Cox regression analysis revealed 19 lncRNAs with survival time dependency. These nine lncRNAs were used to construct our survival model via multivariate Cox regression analysis: TP73-AS1, AC078883.3, RP11–944L7.4, HAR1B, RP4–635E18.7, HOTAIR, SAPCD1-AS1, AC104653.1, and RP5–1172N10.2. The nine lncRNAs associated with them were inputted into the DAVID database for gene ontology and KEGG function enrichment analysis. The result showed these genes were enriched with ion binding, transport, cell-cell signaling, plasma membrane parts, and more, and they were mainly related to neuroactive ligand-receptor interaction pathway, calcium signaling pathway, and the mitogen-activated protein kinase signaling pathway. Conclusion The nine lncRNAs were a set of biomarkers for the prognosis of patients with GBM, enabling a more accurate prediction of survival and revealing more biological functions.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jingchao Liu ◽  
Hong Ma ◽  
Lingfeng Meng ◽  
Xiaodong Liu ◽  
Zhengtong Lv ◽  
...  

Purpose: To identify whether ferroptosis-related genes play predictive roles in bladder cancer patients and to develop a ferroptosis-related gene signature to predict overall survival outcomes.Materials and Methods: We downloaded the mRNA expression files and clinical data of 256 bladder samples (188 bladder tumour and 68 nontumour samples) from the GEO database and 430 bladder samples (411 bladder tumour and 19 nontumour samples) from the TCGA database. A multigene signature based on prognostic ferroptosis-related genes was constructed by least absolute shrinkage and selection operator Cox regression analysis in the GEO cohort. The TCGA cohort was used to validate the ferroptosis-related gene signature. Next, functional enrichment analysis, including both Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analyses, was performed to elucidate the mechanism underlying the signature. The ssGSEA scores of 16 immune cells and 13 immune-related pathway activities between the high-risk and low-risk groups were also analysed in our study.Results: Thirty-three (67.3%) ferroptosis-related genes were differentially expressed between bladder tumour samples and nontumour samples in the GEO cohort. The intersection of prognostic ferroptosis-related genes and differentially expressed genes identified four prognostic targets, including ALOX5, FANCD2, HMGCR and FADS2. The least absolute shrinkage and selection operator Cox regression successfully built a 4-gene signature: risk score value = esum (each gene’s normalized expression * each gene’s coefficient). Univariate and multivariate Cox regression analyses were performed in both the GEO and TCGA cohorts to test the independent prognostic value of the 4-gene risk signature. Multivariate Cox regression analysis in the GEO cohort identified age (p < 0.001), grade (p = 0.129) and risk score (p = 0.016) as independent prognostic predictors for overall survival. Multivariate Cox regression analysis in the TCGA cohort also identified age (p = 0.002), stage (p < 0.001) and risk score (p = 0.006) as independent prognostic predictors for overall survival. The type II IFN response was determined to be significantly weakened in the high-risk group in both the GEO and TCGA cohorts.Conclusion: We successfully built a ferroptosis-related gene signature of significant predictive value for bladder cancer. These results suggest a novel research direction for targeted therapy of bladder cancer in the future.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chunlei Wu ◽  
Quanteng Hu ◽  
Dehua Ma

AbstractLung adenocarcinoma (LUAD) is the main pathological subtype of Non-small cell lung cancer. We downloaded the gene expression profile and immune-related gene set from the TCGA and ImmPort database, respectively, to establish immune-related gene pairs (IRGPs). Then, IRGPs were subjected to univariate Cox regression analysis, LASSO regression analysis, and multivariable Cox regression analysis to screen and develop an IRGPs signature. The receiver operating characteristic curve (ROC) was applied for evaluating the predicting accuracy of this signature by calculating the area under ROC (AUC) and data from the GEO set was used to validate this signature. The relationship of 22 tumor-infiltrating immune cells (TIICs) to the immune risk score was also investigated. An IRGPs signature with 8 IRGPs was constructed. The AUC for 1- and 3-year overall survival in the TCGA set was 0.867 and 0.870, respectively. Similar results were observed in the AUCs of GEO set 1, 2 and 3 (GEO set 1 [1-year: 0.819; 3-year: 0.803]; GEO set 2 [1-year: 0.834; 3-year: 0.870]; GEO set 3 [1-year: 0.955; 3-year: 0.827]). Survival analysis demonstrated high-risk LUAD patients exhibited poorer prognosis. The multivariable Cox regression indicated that the risk score was an independent prognostic factor. The immune risk score was highly associated with several TIICs (Plasma cells, memory B cells, resting memory CD4 T cells, and activated NK cells). We developed a novel IRGPs signature for predicting 1- and 3- year overall survival in LUAD, which would be helpful for prognosis assessment of LUAD.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shaojie Chen ◽  
Feifei Huang ◽  
Shangxiang Chen ◽  
Yinting Chen ◽  
Jiajia Li ◽  
...  

ObjectiveGrowing evidence has highlighted that the immune and stromal cells that infiltrate in pancreatic cancer microenvironment significantly influence tumor progression. However, reliable microenvironment-related prognostic gene signatures are yet to be established. The present study aimed to elucidate tumor microenvironment-related prognostic genes in pancreatic cancer.MethodsWe applied the ESTIMATE algorithm to categorize patients with pancreatic cancer from TCGA dataset into high and low immune/stromal score groups and determined their differentially expressed genes. Then, univariate and LASSO Cox regression was performed to identify overall survival-related differentially expressed genes (DEGs). And multivariate Cox regression analysis was used to screen independent prognostic genes and construct a risk score model. Finally, the performance of the risk score model was evaluated by Kaplan-Meier curve, time-dependent receiver operating characteristic and Harrell’s concordance index.ResultsThe overall survival analysis demonstrated that high immune/stromal score groups were closely associated with poor prognosis. The multivariate Cox regression analysis indicated that the signatures of four genes, including TRPC7, CXCL10, CUX2, and COL2A1, were independent prognostic factors. Subsequently, the risk prediction model constructed by those genes was superior to AJCC staging as evaluated by time-dependent receiver operating characteristic and Harrell’s concordance index, and both KRAS and TP53 mutations were closely associated with high risk scores. In addition, CXCL10 was predominantly expressed by tumor associated macrophages and its receptor CXCR3 was highly expressed in T cells at the single-cell level.ConclusionsThis study comprehensively investigated the tumor microenvironment and verified immune/stromal-related biomarkers for pancreatic cancer.


2021 ◽  
Vol 20 ◽  
pp. 153303382110414
Author(s):  
Xiaoyong Li ◽  
Jiaqong Lin ◽  
Yuguo pan ◽  
Peng Cui ◽  
Jintang Xia

Background: Liver progenitor cells (LPCs) play significant roles in the development and progression of hepatocellular carcinoma (HCC). However, no studies on the value of LPC-related genes for evaluating HCC prognosis exist. We developed a gene signature of LPC-related genes for prognostication in HCC. Methods: To identify LPC-related genes, we analyzed mRNA expression arrays from a dataset (GSE57812 & GSE 37071) containing LPCs, mature hepatocytes, and embryonic stem cell samples. HCC RNA-Seq data from The Cancer Genome Atlas (TCGA) were used to explore the differentially expressed genes (DEGs) related to prognosis through DEG analysis and univariate Cox regression analysis. Lasso and multivariate Cox regression analyses were performed to construct the LPC-related gene prognostic model in the TCGA training dataset. This model was validated in the TCGA testing set and an external dataset (International Cancer Genome Consortium [ICGC] dataset). Finally, we investigated the relationship between this prognostic model with tumor-node-metastasis stage, tumor grade, and vascular invasion of HCC. Results: Overall, 1770 genes were identified as LPC-related genes, of which 92 genes were identified as DEGs in HCC tissues compared with normal tissues. Furthermore, we randomly assigned patients from the TCGA dataset to the training and testing cohorts. Twenty-six DEGs correlated with overall survival (OS) in the univariate Cox regression analysis. Lasso and multivariate Cox regression analyses were performed in the TCGA training set, and a 3-gene signature was constructed to stratify patients into 2 risk groups: high-risk and low-risk. Patients in the high-risk group had significantly lower OS than those in the low-risk group. Receiver operating characteristic curve analysis confirmed the signature's predictive capacity. Moreover, the risk score was confirmed to be an independent predictor for patients with HCC. Conclusion: We demonstrated that the LPC-related gene signature can be used for prognostication in HCC. Thus, targeting LPCs may serve as a therapeutic alternative for HCC.


2021 ◽  
Author(s):  
Chao Zhang ◽  
Haixiao Wu ◽  
Guijun Xu ◽  
Wenjuan Ma ◽  
Lisha Qi ◽  
...  

Abstract Background: Osteosarcoma is the most common primary malignant bone tumor. The current study was conducted to describe the general condition of patients with primary osteosarcoma in a single cancer center in Tianjin, China and to investigate the associated factors in osteosarcoma patients with lung metastasis. Methods: From February 2009 to October 2020, patients from Tianjin Medical University Cancer Institute and Hospital, China were retrospectively analyzed. The Kaplan–Meier method was used to evaluate the overall survival of osteosarcoma patients. Prognostic factors of patients with osteosarcoma were identified by the Cox proportional hazard regression analysis. Risk factor of lung metastasis in osteosarcoma were investigated by the logistic regression model. Results: A total of 203 patients were involved and 150 patients were successfully followed up for survival status. The 5-year survival rate of osteo-sarcoma patients was 70.0%. Surgery, bone and lung metastasis were the significant prognostic factors in multivariable Cox regression analysis. Twenty-one (10.3%) patients showed lung metastasis at the diagnosis of osteosarcoma and 67 (33%) lung metastases during the later course. T3 stage (OR=11.415, 95%CI 1.362-95.677, P=0.025) and synchronous bone metastasis (OR=6.437, 95%CI 1.69-24.51, P=0.006) were risk factors of synchronous lung metastasis occurrence. Good necrosis (≥90%, OR=0.097, 95%CI 0.028-0.332, P=0.000) and elevated Ki-67 (≥50%, OR=4.529, 95%CI 1.241-16.524, P=0.022) were proved to be significantly associated with metachronous lung metastasis occurrence. Conclusion: The overall survival, prognostic factors and risk factors for lung metastasis in this single center provided insight about osteosarcoma management.


2020 ◽  
Author(s):  
Tianwei Wang ◽  
Yunyan Wang

Abstract Objectives: In this study, we want to combine GATA3, VEGF, EGFR and Ki67 with clinical information to develop and validate a prognostic nomogram for bladder cancer.Methods: A total of 188 patients with clinical information and immunohistochemistry were enrolled in this study, from 1996 to 2018. Univariable and multivariable cox regression analysis was applied to identify risk factors for nomogram of overall survival (OS). The calibration of the nomogram was performed and the Area Under Curve (AUC) was calculated to assess the performance of the nomogram. Internal validation was performed with the validation cohort., the calibration curve and the AUC were calculated simultaneously.Results: Univariable and multivariable analysis showed that age (HR: 2.229; 95% CI: 1.162-4.274; P=0.016), histology (HR: 0.320; 95% CI: 0.136-0.751; P=0.009), GATA3 (HR: 0.348; 95% CI: 0.171-0.709; P=0.004), VEGF (HR: 2.295; 95% CI: 1.225-4.301; P=0.010) and grade (HR: 4.938; 95% CI: 1.339-18.207; P=0.016) remained as independent risk factors for OS. The age, histology, grade, GATA3 and VEGF were included to build the nomogram. The accuracy of the risk model was further verified with the C-index. The C-index were 0.65 (95% CI, 0.58-0.72) and 0.58 (95% CI, 0.46-0.70) in the training and validation cohort respectively. Conclusions: A combination of clinical variables with immunohistochemical results based nomogram would predict the overall survival of patients with bladder cancer.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Xiang-hui Ning ◽  
Yuan-yuan Qi ◽  
Fang-xin Wang ◽  
Song-chao Li ◽  
Zhan-kui Jia ◽  
...  

Bladder cancer (BLCA) is the most common urinary tract tumor and is the 11th most malignant cancer worldwide. With the development of in-depth multisystem sequencing, an increasing number of prognostic molecular markers have been identified. In this study, we focused on the role of protein-coding gene methylation in the prognosis of BLCA. We downloaded BLCA clinical and methylation data from The Cancer Genome Atlas (TCGA) database and used this information to identify differentially methylated genes and construct a survival model using lasso regression. We assessed 365 cases, with complete information regarding survival status, survival time longer than 30 days, age, gender, and tumor characteristics (grade, stage, T, M, N), in our study. We identified 353 differentially methylated genes, including 50 hypomethylated genes and 303 hypermethylated genes. After annotation, a total of 227 genes were differentially expressed. Of these, 165 were protein-coding genes. Three genes (zinc finger protein 382 (ZNF382), galanin receptor 1 (GALR1), and structural maintenance of chromosomes flexible hinge domain containing 1 (SMCHD1)) were selected for the final risk model. Patients with higher-risk scores represent poorer survival than patients with lower-risk scores in the training set ( HR = 2.37 , 95% CI 1.43-3.94, p = 0.001 ), in the testing group ( HR = 1.85 , 95% CI 1.16-2.94, p = 0.01 ), and in the total cohort ( HR = 2.06 , 95% CI 1.46-2.90, p < 0.001 ). Further univariate and multivariate analyses using the Cox regression method were conducted in these three groups, respectively. All the results indicated that risk score was an independent risk factor for BLCA. Our study screened the different methylation protein-coding genes in the BLCA tissues and constructed a robust risk model for predicting the outcome of BLCA patients. Moreover, these three genes may function in the mechanism of development and progression of BLCA, which should be fully clarified in the future.


Sign in / Sign up

Export Citation Format

Share Document