scholarly journals Secondary succession, biotic interactions and the functioning of roadside communities: plant-soil interactions matter more than plant-plant interactions

Ecosistemas ◽  
2019 ◽  
Vol 28 (2) ◽  
pp. 50-60
Author(s):  
Santiago Soliveres ◽  
Pablo García Palacios
Author(s):  
Jitendra Rajpoot

International Allelopathy Society has redefined Allelopathy as any process involving secondary metabolities produced by plants, algae, bacteria, fungi and viruses that influences the growth and development of agricultural and biological system; a study of the functions of secondary metabolities, their significance in biological organization, their evolutionary origin and elucidation of the mechanisms involving plant-plant, plant-microorganisms, plant-virus, plant-insect, plant-soil-plant interactions.


2017 ◽  
Vol 215 (4) ◽  
pp. 1413-1424 ◽  
Author(s):  
Aurore Kaisermann ◽  
Franciska T. de Vries ◽  
Robert I. Griffiths ◽  
Richard D. Bardgett

2010 ◽  
Vol 497 (1-2) ◽  
pp. 14-20 ◽  
Author(s):  
M. Eugenia Sesto Cabral ◽  
Fanny I. Schabes ◽  
E. Elizabeth Sigstad

2011 ◽  
Vol 7 (5) ◽  
pp. 699-701 ◽  
Author(s):  
Emmanuel Defossez ◽  
Benoît Courbaud ◽  
Benoît Marcais ◽  
Wilfried Thuiller ◽  
Elena Granda ◽  
...  

Theoretical models predict weakening of negative biotic interactions and strengthening of positive interactions with increasing abiotic stress. However, most empirical tests have been restricted to plant–plant interactions. No empirical study has examined theoretical predictions of interactions between plants and below-ground micro-organisms, although soil biota strongly regulates plant community composition and dynamics. We examined variability in soil biota effects on tree regeneration across an abiotic gradient. Our candidate tree species was European beech ( Fagus sylvatica L.), whose regeneration is extremely responsive to soil biota activity. In a greenhouse experiment, we measured tree survival in sterilized and non-sterilized soils collected across an elevation gradient in the French Alps. Negative effects of soil biota on tree survival decreased with elevation, similar to shifts observed in plant–plant interactions. Hence, soil biota effects must be included in theoretical models of plant biotic interactions to accurately represent and predict the effects of abiotic gradient on plant communities.


2018 ◽  
Vol 93 (4) ◽  
pp. 747-770 ◽  
Author(s):  
Harihar Jaishree Subrahmaniam ◽  
Cyril Libourel ◽  
Etienne-Pascal Journet ◽  
Jean-Benoît Morel ◽  
Stéphane Muños ◽  
...  

Author(s):  
Tereza Jedelská ◽  
Lenka Luhová ◽  
Marek Petřivalský

Abstract Nitric oxide (NO) and reactive nitrogen species have emerged as crucial signalling and regulatory molecules across all organisms. In plants, fungi and fungi-like oomycetes, NO is involved in the regulation of multiple processes during their growth, development, reproduction, responses to the external environment and biotic interactions. It has become evident that NO is produced and used as signalling and defence cues by both partners in multiple forms of plant interactions with their microbial counterparts, ranging from symbiotic to pathogenic modes. This review summarizes current knowledge on NO role in plant-pathogen interactions, focused on biotrophic, necrotrophic and hemibiotrophic fungi and oomycetes. Actual advances and gaps in the identification of NO sources and fate in plant and pathogen cells are discussed. We review the decisive role of time- and site-specific NO production in germination, oriented growth and active penetration of filamentous pathogens to the host tissues, as well in pathogen recognition, and defence activation in plants. Distinct functions of NO are highlighted on diverse interactions of host plants with fungal and oomycete pathogens of different lifestyles, where NO in interplay with reactive oxygen species govern successful plant colonization, cell death and resistance establishment.


Alpine Botany ◽  
2021 ◽  
Author(s):  
Vera Margreiter ◽  
Janette Walde ◽  
Brigitta Erschbamer

AbstractSeed germination and seedling recruitment are key processes in the life cycle of plants. They enable populations to grow, migrate, or persist. Both processes are under environmental control and influenced by site conditions and plant–plant interactions. Here, we present the results of a seed-sowing experiment performed along an elevation gradient (2000–2900 m a.s.l.) in the European eastern Alps. We monitored the germination of seeds and seedling recruitment for 2 years. Three effects were investigated: effects of sites and home sites (seed origin), effects of gaps, and plant–plant interactions. Seeds of eight species originating from two home sites were transplanted to four sites (home site and ± in elevation). Seed sowing was performed in experimentally created gaps. These gap types (‘gap + roots’, ‘neighbor + roots’, and ‘no-comp’) provided different plant–plant interactions and competition intensities. We observed decreasing germination with increasing elevation, independent of the species home sites. Competition-released gaps favored recruitment, pointing out the important role of belowground competition and soil components in recruitment. In gaps with one neighboring species, neutral plant–plant interactions occurred (with one exception). However, considering the relative vegetation cover of each experimental site, high vegetation cover resulted in positive effects on recruitment at higher sites and neutral effects at lower sites. All tested species showed intraspecific variability when responding to the experimental conditions. We discuss our findings considering novel site and climatic conditions.


Metabolites ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 213
Author(s):  
Irene Dini ◽  
Roberta Marra ◽  
Pierpaolo Cavallo ◽  
Angela Pironti ◽  
Immacolata Sepe ◽  
...  

Plants emit volatile organic compounds (VOCs) that induce metabolomic, transcriptomic, and behavioral reactions in receiver organisms, including insect pollinators and herbivores. VOCs’ composition and concentration may influence plant-insect or plant-plant interactions and affect soil microbes that may interfere in plant-plant communication. Many Trichoderma fungi act as biocontrol agents of phytopathogens and plant growth promoters. Moreover, they can stimulate plant defense mechanisms against insect pests. This study evaluated VOCs’ emission by olive trees (Olea europaea L.) when selected Trichoderma fungi or metabolites were used as soil treatments. Trichoderma harzianum strains M10, T22, and TH1, T. asperellum strain KV906, T. virens strain GV41, and their secondary metabolites harzianic acid (HA), and 6-pentyl-α-pyrone (6PP) were applied to olive trees. Charcoal cartridges were employed to adsorb olive VOCs, and gas chromatography mass spectrometry (GC-MS) analysis allowed their identification and quantification. A total of 45 volatile compounds were detected, and among these, twenty-five represented environmental pollutants and nineteen compounds were related to olive plant emission. Trichoderma strains and metabolites differentially enhanced VOCs production, affecting three biosynthetic pathways: methylerythritol 1-phosphate (MEP), lipid-signaling, and shikimate pathways. Multivariate analysis models showed a characteristic fingerprint of each plant-fungus/metabolite relationship, reflecting a different emission of VOCs by the treated plants. Specifically, strain M10 and the metabolites 6PP and HA enhanced the monoterpene syntheses by controlling the MEP pathway. Strains GV41, KV906, and the metabolite HA stimulated the hydrocarbon aldehyde formation (nonanal) by regulating the lipid-signaling pathway. Finally, Trichoderma strains GV41, M10, T22, TH1, and the metabolites HA and 6PP improve aromatic syntheses at different steps of the shikimate pathway.


2021 ◽  
pp. 127993
Author(s):  
Chun Song ◽  
Clement Kyei Sarpong ◽  
Xiaofeng Zhang ◽  
Wenjing Wang ◽  
Lingfeng Wang ◽  
...  

Oecologia ◽  
2021 ◽  
Author(s):  
Maria Väisänen ◽  
Maria Tuomi ◽  
Hannah Bailey ◽  
Jeffrey M. Welker

AbstractThe boreal forest consists of drier sunlit and moister-shaded habitats with varying moss abundance. Mosses control vascular plant–soil interactions, yet they all can also be altered by grazers. We determined how 2 decades of reindeer (Rangifer tarandus) exclusion affect feather moss (Pleurozium schreberi) depth, and the accompanying soil N dynamics (total and dissolvable inorganic N, δ15N), plant foliar N, and stable isotopes (δ15N, δ13C) in two contrasting habitats of an oligotrophic Scots pine forest. The study species were pine seedling (Pinus sylvestris L.), bilberry (Vaccinium myrtillus L.), lingonberry (V. vitis-idaea L.), and feather moss. Moss carpet was deeper in shaded than sunlit habitats and increased with grazer exclusion. Humus N content increased in the shade as did humus δ15N, which also increased due to exclusion in the sunlit habitats. Exclusion increased inorganic N concentration in the mineral soil. These soil responses were correlated with moss depth. Foliar chemistry varied due to habitat depending on species identity. Pine seedlings showed higher foliar N content and lower foliar δ15N in the shaded than in the sunlit habitats, while bilberry had both higher foliar N and δ15N in the shade. Thus, foliar δ15N values of co-existing species diverged in the shade indicating enhanced N partitioning. We conclude that despite strong grazing-induced shifts in mosses and subtler shifts in soil N, the N dynamics of vascular vegetation remain unchanged. These indicate that plant–soil interactions are resistant to shifts in grazing intensity, a pattern that appears to be common across boreal oligotrophic forests.


Sign in / Sign up

Export Citation Format

Share Document