scholarly journals Do interactions between plant and soil biota change with elevation? A study on Fagus sylvatica

2011 ◽  
Vol 7 (5) ◽  
pp. 699-701 ◽  
Author(s):  
Emmanuel Defossez ◽  
Benoît Courbaud ◽  
Benoît Marcais ◽  
Wilfried Thuiller ◽  
Elena Granda ◽  
...  

Theoretical models predict weakening of negative biotic interactions and strengthening of positive interactions with increasing abiotic stress. However, most empirical tests have been restricted to plant–plant interactions. No empirical study has examined theoretical predictions of interactions between plants and below-ground micro-organisms, although soil biota strongly regulates plant community composition and dynamics. We examined variability in soil biota effects on tree regeneration across an abiotic gradient. Our candidate tree species was European beech ( Fagus sylvatica L.), whose regeneration is extremely responsive to soil biota activity. In a greenhouse experiment, we measured tree survival in sterilized and non-sterilized soils collected across an elevation gradient in the French Alps. Negative effects of soil biota on tree survival decreased with elevation, similar to shifts observed in plant–plant interactions. Hence, soil biota effects must be included in theoretical models of plant biotic interactions to accurately represent and predict the effects of abiotic gradient on plant communities.

Alpine Botany ◽  
2021 ◽  
Author(s):  
Vera Margreiter ◽  
Janette Walde ◽  
Brigitta Erschbamer

AbstractSeed germination and seedling recruitment are key processes in the life cycle of plants. They enable populations to grow, migrate, or persist. Both processes are under environmental control and influenced by site conditions and plant–plant interactions. Here, we present the results of a seed-sowing experiment performed along an elevation gradient (2000–2900 m a.s.l.) in the European eastern Alps. We monitored the germination of seeds and seedling recruitment for 2 years. Three effects were investigated: effects of sites and home sites (seed origin), effects of gaps, and plant–plant interactions. Seeds of eight species originating from two home sites were transplanted to four sites (home site and ± in elevation). Seed sowing was performed in experimentally created gaps. These gap types (‘gap + roots’, ‘neighbor + roots’, and ‘no-comp’) provided different plant–plant interactions and competition intensities. We observed decreasing germination with increasing elevation, independent of the species home sites. Competition-released gaps favored recruitment, pointing out the important role of belowground competition and soil components in recruitment. In gaps with one neighboring species, neutral plant–plant interactions occurred (with one exception). However, considering the relative vegetation cover of each experimental site, high vegetation cover resulted in positive effects on recruitment at higher sites and neutral effects at lower sites. All tested species showed intraspecific variability when responding to the experimental conditions. We discuss our findings considering novel site and climatic conditions.


2017 ◽  
Author(s):  
Gianalberto Losapio ◽  
Marcelino de la Cruz ◽  
Adrián Escudero ◽  
Bernhard Schmid ◽  
Christian Schöb

Ecologists have recognised the effects of biotic interactions on the spatial distribution of living organisms. Yet, the spatial structure of plant interaction networks in real-world ecosystems has remained elusive so far. Using spatial pattern and network analyses, we found that alpine plant communities are organised in spatially variable and complex networks. Specifically, the cohesiveness of complex networks is promoted by short-distance positive plant interactions. At fine spatial scale, where positive mutual interactions prevailed, networks were characterised by a large connected component. With increasing scale, when negative interactions took over, network architecture became more hierarchical with many detached components that show a network collapse. This study highlights the crucial role of positive interactions for maintaining species diversity and the resistance of communities in the face of environmental perturbations.


Ecology ◽  
2012 ◽  
Author(s):  
Christopher J. Lortie

Species interactions are a cornerstone of ecological research wherein the effects of an individual of one species on another individual, frequently a different species, are studied. Within versus between species interactions are also commonly contrasted as a means to infer relative importance, but the majority of theory advances, at least at the community level, are associated with interactions between individuals of different species. Interactions can range from positive to negative, and effects are measured at all levels of development, or life history stages, of an organism. Positive interactions have been extensively studied in both population and community ecology. Facilitation, however, is a relatively specific term that has evolved primarily to describe positive plant–plant interactions (see Defining Facilitation). Facilitation, or positive interactions, is a relatively recent subset of these species interactions in general, including related processes, such as competition, mutualism, and parasitism. Facilitation is best viewed as the antithesis of the plant competition literature, as it shares many of the main attributes, both in terms of scope and approach, and arose as a comparator to this research. Facilitation studies mainly refer to positive plant–plant interactions, as the term was proposed in the plant literature and extensively used to describe interactions that include a positive effect of one species on another. Mutualism and parasitism research is often plant–insect based and formally identifies the reciprocal effect in the interaction, that is, (+, +) in mutualism and (+,−) in parasitism, whereas facilitation studies are generally (+,0) or (+,?), with the second effect often unreported. Interactions that include at least one negative interaction are usually described as competition in the plant literature and do not apply the term facilitation (although the frequency of both being discussed concomitantly is increasing). Hence, the term facilitation, owing to historical use, describes the subset of interactions that are (+,0) and is mostly specific to within plants, although its usage is expanding. The research on facilitation has most likely peaked, similar to plant competition studies, in that facilitation has been clearly established as an important process in the formation of plant communities. Additional studies simply demonstrating facilitation are increasing unlikely to be present in the literature. That said, the implications to theory and other, more nuanced aspects of interaction, such as context dependence, shifting balances, and importance of the environment, as they relate to facilitation, are still largely unexplored. In the early 21st century the most contentious debates, with respect to facilitation, center on either disagreement concerning what a community is and whether research should be conducted at this scale or on how to use environmental gradients (i.e., stress) most effectively. Both of these topics are described herein, with readings also included on Historical Background, Experimental and Analytical Approaches, Evolution, other taxa, and Applications.


Web Ecology ◽  
2012 ◽  
Vol 12 (1) ◽  
pp. 49-55 ◽  
Author(s):  
C. Ariza ◽  
K. Tielbörger

Abstract. Despite efforts to discern the role of plant size in resource competition, the circumstances under which size-dependent plant-plant interactions occur are still unclear. The traditional assumption is that competition intensifies with increasing neighbour size. However, recent studies suggest that the size (biomass) dependence of competitive interactions is strongest at very low biomass levels and becomes negligible after a certain threshold neighbour biomass has been reached. We searched for the generality of such patterns for three common annual plant species in Israel. We monitored target and neighbour biomass along their entire lifecycle using an even-aged, intraspecific and intrapopulation competition screenhouse experiment under water-limited conditions. For all focal species, neighbour presence had a net negative effect on vegetative biomass at harvest. However, this was not explained by increasing neighbour biomass over time, as a consistent pattern of size-dependent facilitative, rather than competitive, interactions was observed at all life stages. We explain these observations in terms of co-occurring aboveground facilitation and dominant belowground competition for water. Since our findings are the first of their kind and contradict theoretical predictions of biomass dependence of net negative interactions, we advocate further experiments addressing size dependence in interactions among plants. In particular, theoretical models addressing size dependence of positive interactions must be developed.


2021 ◽  
Vol 13 (9) ◽  
pp. 4695
Author(s):  
Mohamed Lazali ◽  
Simon Boudsocq ◽  
Elisa Taschen ◽  
Mohamed Farissi ◽  
Wissem Hamdi ◽  
...  

Modern intensive agricultural systems generally focus on the productivity of monocultures. They are characterized by a low diversity of crops, with uniform and symmetrical planting layouts. They largely rely on the utilization of chemical inputs. They are widely denounced for their negative environmental impacts. In this context, the ecological intensification framework proposes the exploitation of biodiversity in order to better achieve such ecosystem services and soil conservation. Intercropping, i.e., the simultaneous growth of two or more crops mixed in the same field, appears to have the potentialities to improve the productivity, resilience capacity, and ecological sustainability of agroecosystems through the intensification of such positive interactions between plants as facilitation and niche complementarity. Cereal–legume intercropping turns out to be effective in low-N agroecosystems, since legumes have the ability to fix atmospheric nitrogen via their symbiosis with rhizobia. This fixed N, in turn, benefits the cereal through various ecological processes. The objective of the project is to improve the benefit of legumes for intercropped cereals in low-input agroecosystems through the management of plant–plant and plant–microbe interactions. The nitrogen-fixing symbiosis requires phosphorus and iron to be efficient. While these nutrients are prone to be lacking in N-limited agroecosystems, as is the case in Mediterranean agroecosystems, plant–plant interactions and rhizobacteria and mycorrhiza interactions seem to play an important role in their acquisition and efficient utilization. We propose the development of a participatory research project in four Mediterranean agroecosystems. Agronomic and environmental diagnosis will be performed in the field to assess N and P biogeochemical cycles, as well as Fe availability, in combination with the plant performances and the diversity of soil microorganisms. Molecular identification of soil microorganisms from the most productive sites will be done and research of genes for tolerance to Fe- and P-deficiencies will be realized. Glasshouse experiments involving various cultivars of cereals and legumes, as well as the previously identified microorganisms, will be done in order to disentangle the various mechanisms of nutrient acquisition, sharing, and transfer between plants. Other experiments will assess the effects of cereal–legume–microbe interactions on the development and architecture of the plant root systems and root hair development. The lines of research are integrated with a strategy of functional ecology on plant–microbe–soil interactions in the agroecosystems of Gabès (Tunisia), Boumedfaa (Algeria), Beni Mellal (Morocco), and Thessaloniki (Greece). Using multidisciplinary and innovative approaches, the program will provide novel knowledge and understanding of agroecosystem management for food production.


Author(s):  
Carrie Woods ◽  
Katy Maleta ◽  
Kimmy Ortmann

Plant-plant interactions can vary depending on the severity of the environment. Positive interactions, such as facilitation, are important in early life stages while negative interactions, such as competition, predominate in later stages. Through succession, plant-plant interactions often change from facilitative to competitive. In northern temperate rainforests, gap dynamics result in tree falls that facilitate tree regeneration (nurse logs) as well as bryophyte succession. While the importance of nurse logs for tree seedlings is known, how the interactions of bryophyte communities and tree seedlings vary through succession of the log remains unclear. We examined the relationships of tree seedlings, bryophyte community composition, bryophyte depth, and percent canopy cover in 166 plots on nurse logs and the forest floor in the Hoh rainforest in Washington, USA. Tree seedling density was highest on young logs with early-colonizing bryophyte species (e.g., Rhizomnium glabrescens), and lowest on decayed logs with Hylocomium splendens, a long-lived moss that reaches depths >20 cm. As a result, bryophyte depth increased with nurse log decay and was negatively associated with tree seedling density. Tree seedling density was 4.6x higher on nurse logs than on the forest floor, which was likely due to competitive exclusion by H. splendens. Nurse logs had 17 species of bryophytes while the forest floor had six, indicating that nurse logs contribute to maintaining bryophyte diversity. Nurse logs are essential for forest dynamics as they enable both tree seedlings and smaller bryophyte species to avoid competition with the dominant forest floor bryophyte, H. splendens. Given that H. splendens has a global distribution and is often dominant in forested systems across the northern hemisphere, it is likely a widespread driver of plant community structure. Our findings indicate that plant-plant interactions shift with succession on nurse logs from facilitative to competitive and, thus, influence forest community structure and dynamics.


2018 ◽  
Vol 93 (4) ◽  
pp. 747-770 ◽  
Author(s):  
Harihar Jaishree Subrahmaniam ◽  
Cyril Libourel ◽  
Etienne-Pascal Journet ◽  
Jean-Benoît Morel ◽  
Stéphane Muños ◽  
...  

Author(s):  
Jitendra Rajpoot

International Allelopathy Society has redefined Allelopathy as any process involving secondary metabolities produced by plants, algae, bacteria, fungi and viruses that influences the growth and development of agricultural and biological system; a study of the functions of secondary metabolities, their significance in biological organization, their evolutionary origin and elucidation of the mechanisms involving plant-plant, plant-microorganisms, plant-virus, plant-insect, plant-soil-plant interactions.


Ecosystems ◽  
2021 ◽  
Author(s):  
Theresa S. Ibáñez ◽  
David A. Wardle ◽  
Michael J. Gundale ◽  
Marie-Charlotte Nilsson

AbstractWildfire disturbance is important for tree regeneration in boreal ecosystems. A considerable amount of literature has been published on how wildfires affect boreal forest regeneration. However, we lack understanding about how soil-mediated effects of fire disturbance on seedlings occur via soil abiotic properties versus soil biota. We collected soil from stands with three different severities of burning (high, low and unburned) and conducted two greenhouse experiments to explore how seedlings of tree species (Betula pendula, Pinus sylvestris and Picea abies) performed in live soils and in sterilized soil inoculated by live soil from each of the three burning severities. Seedlings grown in live soil grew best in unburned soil. When sterilized soils were reinoculated with live soil, seedlings of P. abies and P. sylvestris grew better in soil from low burn severity stands than soil from either high severity or unburned stands, demonstrating that fire disturbance may favor post-fire regeneration of conifers in part due to the presence of soil biota that persists when fire severity is low or recovers quickly post-fire. Betula pendula did not respond to soil biota and was instead driven by changes in abiotic soil properties following fire. Our study provides strong evidence that high fire severity creates soil conditions that are adverse for seedling regeneration, but that low burn severity promotes soil biota that stimulates growth and potential regeneration of conifers. It also shows that species-specific responses to abiotic and biotic soil characteristics are altered by variation in fire severity. This has important implications for tree regeneration because it points to the role of plant–soil–microbial feedbacks in promoting successful establishment, and potentially successional trajectories and species dominance in boreal forests in the future as fire regimes become increasingly severe through climate change.


Sign in / Sign up

Export Citation Format

Share Document