ECOLOGICAL IMPACTS OF OIL SPILL CLEANUP: ARE THEY SIGNIFICANT?

1979 ◽  
Vol 1979 (1) ◽  
pp. 521-524 ◽  
Author(s):  
June Lindstedt Siva

ABSTRACT Clear goals are needed in formulating and applying oil spill response plans whether at the level of the individual company, the oil cleanup cooperative, or the federal or state agency. There are two primary goals which have been considered, and problems arise from the fact that, in practice, these goals may not always be compatible. The goals are: (1) minimize the overall ecological impacts of the oil spill; and (2) remove all visible spilled oil from the environment. The first goal is based on an ecological rationale, the second on an esthetic one. During actual spill experiences, the second goal has most often been the guiding force behind the response. There are a number of areas of conflict between these two philosophies; but, except in cases where life and limb are threatened, the first goal should be the prime directive in oil spill response. Application of goal (1) is most important in areas of high ecological value. Goal (2) may be applicable under certain conditions in high visibility areas such as beaches. This paper summarizes the findings of a task force of biologists organized by the Society of Petroleum Industry Biologists; reviews the ecological effects of various oil spill cleanup methods in several different habitat types; notes research needs; and recommends minimum-impact cleanup methods for specific environments.

2001 ◽  
Vol 2001 (2) ◽  
pp. 987-990
Author(s):  
Kristy Plourde ◽  
Jean R. Cameron ◽  
Vickie Huyck

ABSTRACT The original oil spill Field Operations Guide (FOG) was a product of the Standard Oil Spill Response Management System (STORMS) Task Force comprised of representatives of the U. S. Coast Guard, California Department of Fish and Game Office of Spill Prevention and Response (OSPR), other states, the petroleum industry, oil spill response organizations, and local government. The STORMS Task Force produced this first version of the “oilized” Incident Command System (ICS) FOG and Incident Action Plan (IAP) forms in 1994 and made subsequent revisions in 1995 and 1996. With 2 more years of ICS experience and facilitated by the States/British Columbia Oil Spill Task Force, a new group of representatives from federal and state governments, the petroleum industry, and oil spill response professionals met to review and update the 1996 FOG and IAP forms in October 1998. The overall goal was to remain consistent with the National Interagency Incident Management System (NIIMS) yet reflect the experience gained using ICS at actual oil spills and drills. The group met quarterly over an 18-month period, working collaboratively to reach a consensus on numerous changes. Some of the changes included adding an Environmental Unit to the Planning Section, revising the planning cycle diagram for the oil spill IAP process, and revising the IAP forms as appropriate to reflect the way oil spills are managed. All significant revisions/improvements will be highlighted in this paper and poster.


2020 ◽  
Vol 32 (4) ◽  
pp. 412-438
Author(s):  
TERESA SABOL SPEZIO

AbstractIn the face of technology failures in preventing oil from reaching beaches and coasts after catastrophic oil spills in the 1960s and early 1970s, the oil industry and governmental officials needed to quickly reconsider their idea of prevention. Initially, prevention meant stopping spilled oil from coating beaches and coasts. Exploring the presentations at three oil-spill conferences in 1969, 1971 and 1973, this idea of prevention changed as the technological optimism of finding effective methods met the realities of oil-spill cleanup. By 1973, prevention meant stopping oil spills before they happened. This rapid policy transformation came about because the oil industry could not hide the visual evidence of the source of their technology failures. In this century, as policymakers confront invisible pollutants such as pesticides and greenhouse gases, considering ways to visually show the source of the pollution along with the effects could quicken policy decisions.


1995 ◽  
Vol 1995 (1) ◽  
pp. 855B-857
Author(s):  
M. R. Ouwerkerk ◽  
P. R. H. Verbeek ◽  
T. Schut

ABSTRACT Trailing suction hopper dredges maintain ports and their entrance channels around the world. Several of these dredges have already operated as oil spill cleanup vessels as a secondary assignment. Different types of available oil spill response systems were applied. Recent developments allow these dredges to use their own dredge pumps, making these vessels by far the largest capacity oil spill cleanup vessels available in the world. The add-on system requires no modifications of the vessel and a relatively low investment. Tests have documented very good performance.


1987 ◽  
Vol 1987 (1) ◽  
pp. 231-233
Author(s):  
Paul Waters ◽  
Albert F. Hadermann

ABSTRACT When ultrahigh molecular weight elastomers are dissolved in hydrocarbon liquids the resulting solutions become highly cohesive under tensile stress. The effect increases with increasing molecular weight and concentration of the polymer, decreasing temperature, and increasing viscosity of the liquid. The benefits derived from using ultrahigh molecular weight elastomers in oil spill response and removal activities are: increased resistance to spreading, automatic separation of oil and water at the skimmer, and increased capacity of skimmer devices. In general, these benefits translate into reduced labor, transportation, storage or disposal costs.


1995 ◽  
Vol 1995 (1) ◽  
pp. 663-666
Author(s):  
Peter A. Tebeau

ABSTRACT Successful oil spill response requires effectively managing the level of effort devoted to response operations. This includes choosing appropriate technologies and implementing them to achieve optimal environmental benefit, while controlling costs. At the end of the response, effective management requires resolving the “how clean is clean” issue to ensure a smooth termination of the response effort. Various approaches to making these management decisions are reviewed, based on experience in the Exxon Valdez, American Trader, and Morris J. Berman spills. The advantages and constraints of these approaches are summarized, along with suggestions about how the process might be facilitated.


1991 ◽  
Vol 1991 (1) ◽  
pp. 673-676
Author(s):  
Edward Tennyson

ABSTRACT Recent large oil spills from tankers have reaffirmed the need for continuing technology assessment and research to improve oil-spill response capabilities. The Minerals Management Service (MMS) remains a lead agency in conducting these studies. This paper discusses MMS concerns, as reinforced by the acceleration of its research program in 1990. It briefly assesses the current state-of-the-art technology for major aspects of spill response, including remote sensing, open-ocean containment, recovery, in-situ burning, chemical treating agents, beach-line cleanup, and oil behavior. The paper reports on specific research projects that have begun to yield information that will improve detection and at-sea equipment performance. The first detection project, for which MMS has patent pending, involves the use of shipboard navigational radar to track slicks at relatively long range. The second project involves the use of conventional containment and cleanup in a downwind mode, which is contrary to the traditional procedures. The paper also discusses current research projects, including the development of an airborne, laser-assisted fluorosensor that can determine whether apparent slicks contain oil. Additional projects involve the development of improved strategies for responding to oil in broken-ice conditions, for gaining an improved understanding of the fate and behavior of spilled oil as it affects response strategies, and for reopening and operating the oil and hazardous materials simulated environmental test tank (OHMSETT) facility in Leonardo, New Jersey. Recent progress on the development of safe and environmentally acceptable strategies to burn spilled oil in-situ is also discussed. The OHMSETT facility is necessary for testing prospective improvements in chemical treating agents and to develop standard procedures for testing and evaluating response equipment.


2008 ◽  
Vol 2008 (1) ◽  
pp. 1093-1095
Author(s):  
Bernie Bennett ◽  
Yvette Osikilo

ABSTRACT The International Petroleum Industry Environmental Conservation Association (IPIECA) Oil Spill Working Group (OSWG) is celebrating its 20th anniversary. Its mission has been, through education, training and awareness initiatives, to enhance the state of preparedness and response to marine oil spill incidents in priority coastal locations around the world. Its programme is carried out in close cooperation with the International Maritime Organization (IMO) and operates within the context of the International Convention on Oil Pollution Preparedness, Response and Cooperation (OPRC), 1990. The OSWG is made up of oil spill managers and specialists from IPIECA member companies and associations, supported by invited representatives from other organisations in the oil spill response community. It aims to ensure that the full range of industry interests is adequately reflected in its work programme. Coordination between these industry-based organisations and the IMO remains an essential ingredient in the success of the OSWG programme This paper reviews the main activities and achievements of the IPIECA OSWG over the last 20 years and attempt to illustrate and measure the impact of its work on global oil spill preparedness. We then hypothesize as to how the work of the IPIECA OSWG might develop over the next 20 years, which could serve as future strategic/planning guidance.


2017 ◽  
Vol 2017 (1) ◽  
pp. 431-446

ABSTRACT In a situation where oil is spilled on the Norwegian Continental Shelf (NCS) the operator is responsible for the oil spill response. To do this in a robust and efficient way Norwegian Clean Seas Association for Operating Companies (NOFO) handles the oil spill response on behalf of all member companies. Handling an oil spill response situation in all its forms from offshore incident to beach restoration involves many different resources, skills and people. Introducing Incident Command System (ICS) as the command system for this task even increases the amount of training we need to do. How can NOFO achieve the optimal training of our common and shared response resources in a time where focus is on an effective and robust response? Having an overview of the different response needs and response plans NOFO coordinates activity, training and exercises in an efficient way. This is done with the aid of NOFO’s operative plan. The plan describes every resource with a performance requirement and puts it in to a response context. This gives NOFO a foundation to build a response that is structured and cost efficient for our members. Furthermore, this enables NOFO to tailor our training and exercises from the individual responder/resource to the complex large-scale field exercise which involves typically 250–350 people from numerous different operating companies, municipalities, governmental and private responders. This paper will describe how we plan, train and exercise on the NCS in order to be prepared for response in an efficient and robust way.


2005 ◽  
Vol 2005 (1) ◽  
pp. 1099-1103
Author(s):  
Erich R. Gundlach ◽  
Murat Cekirge ◽  
Robert Castle ◽  
Hamish Reid ◽  
Paul Sutherland

ABSTRACT The BTC (Baku-Tbilisi-Ceyhan) Project includes a 42 in (107 cm) crude oil pipeline extending west from the Caspian Sea across Azerbaijan (433 km, 260 mi), through Georgia (250 km, 150 mi), and then southward through eastern Turkey (1076 km, 645 mi) to a new marine terminal at Ceyhan on the Mediterranean Sea. In Turkey, the pipeline crosses significant mountainous terrain (>2800 m, 8,500 ft), several major rivers as well as five fault zones. The marine terminal includes 7 storage tanks and a 2.7 km (1.6 mi) jetty able to handle two 300,000-dwt tankers simultaneously. The system is designed to transport 1 million barrels per day (∼145,000 t/day). The oil spill contingency plan is designed to protect sensitive areas, catchment basins, and to prevent the migration of spilled oil. Sensitive features were determined by pre-construction surveys and risk analyses, and updated by additional fieldwork focusing on the potential movement and impacts of spilled oil. Response guidelines based on risk and logistics determined the location of equipment depots and the level of equipment necessary to recover Tier 2 spill volumes. Pipeline equipment and depots are selected to rapidly recover spilled oil and to prevent its downslope and downstream movement. The marine response strategy focuses on protection of adjacent lagoons by on-water containment at the berthing area using an oil spill response vessel (OSRV), tugboats, and other workboats, and various lengths and types of booms, skimmers and storage capabilities.


1983 ◽  
Vol 1983 (1) ◽  
pp. 219-226
Author(s):  
Sharon O. Hillman ◽  
Richard V. Shafer

ABSTRACT In 1979 the petroleum industry formed an oil spill response organization called the Alaskan Beaufort Sea Oilspill Response Body (ABSORB). This group's purpose is to help participating oil companies provide an integrated capability to deal with the possibility of a major oil spill in the Alaskan Beaufort Sea. ABSORB and its member companies have maintained a high priority on increasing the state-of-the-art capabilities for effective response during the solid ice season, as reported in earlier conferences. In addition they have worked to identify and fill the data gaps for all season response capabilities. The ongoing research and development engineering projects have complemented this goal, along with the ongoing efforts of the ABSORB staff and member company technical representatives in the areas of equipment selection, purchase, modification and training. This paper briefly reviews the status of ABSORB today in terms of its organization and staffing, facilities and equipment, contingency planning, research and development (R & D), training programs, and response techniques.11,9


Sign in / Sign up

Export Citation Format

Share Document