Limitations of the Swedish coordination capacity for large oil spills

2017 ◽  
Vol 2017 (1) ◽  
pp. 2017040
Author(s):  
Jonas Pålsson ◽  
Lawrence Hildebrand ◽  
Olof Lindén

The inadequacy of the Swedish national emergency management system has been highlighted during several large-scale national emergencies, including forest fires (Västmanland 2014) and storms (Gudrun 2005, Dagmar 2011, and Ivar 2013). The Swedish oil spill preparedness is part of the national emergency response system and was tested under real conditions during the 2003 Fu Shan Hai and 2011 Golden Trader oil spills. Fu Shan Hai spilled 1,200 tonnes of oil on the shorelines of southern Sweden and Golden Trader spilled 500 tonnes on the island of Tjörn. Lessons learned from these incidents and national exercises highlight problems with understanding and cooperation between the organisations responsible during the emergency phase. Complications in the decision-making process lead to confusing, conflicting, or delayed orders, impeding the effectiveness of the response. These difficulties were evident at local, regional, and national levels during the oil spill response. The Swedish oil spill preparedness system does not have a hierarchical structure. Network analysis and surveys of all coastal municipalities, County Administrative Boards and interviews with national oil spill experts were used to examine the characteristics of the oil spill network. This study shows that 80% of the involved organisations have explicit mandates for oil spill preparedness. An established management network exists, covering 83% of the maximum theoretical connections for contingency planning and 88% for response. The Swedish Coast Guard, Swedish Agency for Marine and Water Management, Swedish Civil Contingencies Agency, and Oil Spill Advisory Service are central organisations. The roles of the Swedish Coast Guard are clear to the respondents, but the roles of the Swedish Transport Agency, Environmental Protection Agency, and Swedish Agency for Marine and Water Management are less clear. For planning, the municipalities, County Administrative Boards, Swedish Coast Guard, Swedish Civil Contingencies Agency, and Oil Spill Equipment Depots are considered the most valuable. For response, the municipalities, Swedish Coast Guard, Oil Spill Equipment Depots, County Administrative Boards, Oil Spill Advisory Service, and Swedish Civil Contingencies Agency are considered the most valuable. The few connections between the counties and sometimes between neighbouring municipalities in the network, suggests a need to establish an Incident Management System for national cross-organisational emergencies, such as large oil spills. Most importantly, more cross-organisational exercises are needed to build capacity and the necessary inter-organisational relationships. The authors recommend the formation of an Incident Management System in Sweden in order to improve the management of large oil spills.

1997 ◽  
Vol 1997 (1) ◽  
pp. 737-742
Author(s):  
LT Tina M. Burke ◽  
LT John P. Flynn

ABSTRACT In recent years, the usefulness of the incident command system (ICS) has received much attention. Much of the oil industry and several government agencies involved in all types of emergency response have been using ICS for many years. In addition, the U.S. Coast Guard formally adopted the national interagency incident management system (NIIMS) ICS as the response management system of choice in February of 1996. The response to the tank barge North Cape grounding was a complex multiagency effort that brought with it many of the issues and problems responders face when dealing with crisis situations. This paper describes the ICS-based organization that was established to respond to the major North Cape oil spill, analyzes the organization compared to standard ICS, and discusses how the ICS framework and principles contributed to the success of the response. It also explains how closer conformity to standard ICS could have remedied many of the issues that later surfaced as lessons learned, resulting in improved response efficiency. The North Cape response provides a vivid example of how ICS is a helpful management tool that, if rigorously learned and applied in a widespread fashion, can greatly enhance the nation's oil spill response posture.


2001 ◽  
Vol 2001 (2) ◽  
pp. 987-990
Author(s):  
Kristy Plourde ◽  
Jean R. Cameron ◽  
Vickie Huyck

ABSTRACT The original oil spill Field Operations Guide (FOG) was a product of the Standard Oil Spill Response Management System (STORMS) Task Force comprised of representatives of the U. S. Coast Guard, California Department of Fish and Game Office of Spill Prevention and Response (OSPR), other states, the petroleum industry, oil spill response organizations, and local government. The STORMS Task Force produced this first version of the “oilized” Incident Command System (ICS) FOG and Incident Action Plan (IAP) forms in 1994 and made subsequent revisions in 1995 and 1996. With 2 more years of ICS experience and facilitated by the States/British Columbia Oil Spill Task Force, a new group of representatives from federal and state governments, the petroleum industry, and oil spill response professionals met to review and update the 1996 FOG and IAP forms in October 1998. The overall goal was to remain consistent with the National Interagency Incident Management System (NIIMS) yet reflect the experience gained using ICS at actual oil spills and drills. The group met quarterly over an 18-month period, working collaboratively to reach a consensus on numerous changes. Some of the changes included adding an Environmental Unit to the Planning Section, revising the planning cycle diagram for the oil spill IAP process, and revising the IAP forms as appropriate to reflect the way oil spills are managed. All significant revisions/improvements will be highlighted in this paper and poster.


1997 ◽  
Vol 1997 (1) ◽  
pp. 743-746 ◽  
Author(s):  
Michael de Bettencourt

ABSTRACT An act of terrorism resulting in an oil spill triggers a unique set of response considerations that bring diverse agencies together under crisis conditions. To manage such incidents effectively, a systematic approach is needed to standardize incident response, command, and control methods and to better define the planning process for these demanding scenarios. The National Interagency Incident Management System-Incident Command System (NIIMS-ICS) is the common denominator that has been adopted by the United States Coast Guard for oil spill response. This paper highlights recommendations to adopt the NIIMS-ICS nationally for combined law enforcement and environmental response incidents to ensure efficient and effective response methods.


1997 ◽  
Vol 1997 (1) ◽  
pp. 972-972 ◽  
Author(s):  
Joseph J. Leonard

ABSTRACT In October 1994, southeast Texas experienced some of its worst flooding ever. Near Houston, the raging waters of the San Jacinto River caused a pipeline to rupture, spilling vast quantities of gasoline. When this gasoline found an ignition source, the river became a devastating conflagration. The Coast Guard immediately activated its incident command system (ICS) with a unified command to direct response activities. Lessons learned following the San Jacinto River incident will improve future response activities and serve as the foundation for the adoption of the National Interagency Incident Management System (which includes the ICS) by the Coast Guard and the state of Texas.


2017 ◽  
Vol 2017 (1) ◽  
pp. 1650-1668
Author(s):  
Clément Chazot ◽  
Anton Rhodes

IOSC 2017 Abstract: 2017-269 Abstract The picture today is one of intense oil and gas activity across West, Central and Southern Africa. This is illustrated by the significant increases in crude oil exports over the past fifteen years. This high level of activity has also coincided with, and contributed to, a large increase in the level of shipping in the region. Such level of oil exploration, production, and transportation, means that there exists a threat of oil spills occurring. In response to this risk, the Global Initiative for West, Central, and Southern Africa (GI WACAF) was launched in 2006, with the objective of raising standards of oil spill preparedness and response capability across the region. This paper will describe how the GI WACAF Project cooperates with local stakeholders in order to develop trans-boundary cooperation, and will detail what are the challenges lying ahead in order to make cross-border cooperation fully operational. The analysis of the trans-boundary exercises organised under the umbrella of the GI WACAF Project between Cameroon and Nigeria (2015) on the one hand, and between Gabon and Congo (2015) on the other hand, emphasises the needs in terms of international cooperation, improved communications, integration of response capabilities at the national and regional levels, and the development of effective incident management structures. This paper will show that significant steps have been taken to develop National Oil Spill Contingency Plans across the GI WACAF region and that advances in this area have meant countries are now looking beyond their borders and seeking to integrate national contingency plans with their closest neighbours. Information will be presented concerning the 2015 exercises, the key lessons learned and potential developments of trans-boundary cooperation in the future.


1993 ◽  
Vol 1993 (1) ◽  
pp. 127-133
Author(s):  
Mac W. McCarthy ◽  
John McGrath

ABSTRACT On July 22, 1991, the Tuo Hai, a 46,500 ton Chinese grain carrier, collided with the Tenyo Maru, a 4,800 ton Japanese fish processing ship, off the coast of Washington State. The Tenyo Maru sank, creating an oil spill that cost upwards of $4 million (U.S.) to clean up. The incident initiated a joint response from the U.S. and Canadian governments. As part of this response, the Canadian Coast Guard mobilized an SRN-6 hovercraft. This air cushioned vehicle (ACV) provided logistical support to responders on both sides of the international boundary. The response operation along the Pacific Coast was extensive. Dense fog and the remote location of the impacted area provided formidable challenges to the cleanup effort. It was the mission scenario of the Canadian SRN-6 hovercraft to provide logistical support—as an experiment in ACV utility—to the organizations responding to this incident. Based on this experience, it can be argued that the hovercraft offers great potential value in responding to marine oil spills. Appropriate application of ACV technology can enhance oil spill response work, spill waste management, and incident surveillance. This paper discusses the contribution of the SRN-6 hovercraft to the Tenyo Maru response, briefly examines the use of another, very different hovercraft, during a response in the Gulf of St. Lawrence, and reviews a new hovercraft design and discusses its potential contributions.


1993 ◽  
Vol 1993 (1) ◽  
pp. 695-697 ◽  
Author(s):  
Thomas A. Dean ◽  
Lyman McDonald ◽  
Michael S. Stekoll ◽  
Richard R. Rosenthal

ABSTRACT This paper examines alternative designs for the monitoring and assessment of damages of environmental impacts such as oil spills. The optimal design requires sampling at pairs of impacted (oiled) and control (unoiled) sites both before and after the event. However, this design proved impractical in evaluating impacts of the Exxon Valdez oil spill on nearshore subtidal communities, and may be impractical for future monitoring. An alternative design is discussed in which sampling is conducted at pairs of control and impact sites only after the impact.


1995 ◽  
Vol 1995 (1) ◽  
pp. 761-765
Author(s):  
William Boland ◽  
Pete Bontadelli

ABSTRACT The Marine Safety Division of the 11th Coast Guard District and the California Office of Oil Spill Prevention and Response are pursuing new avenues to assure that federal, state, and local efforts in California achieve the goals of the Oil Pollution Act of 1990 and the Lempert-Keene-Seastrand Oil Spill Prevention and Response Act of 1990. Coordination of the seven California area committees, publishing detailed area contingency plans, and the implemention of a memorandum of agreement on oil spill prevention and response highlight recent cooperative successes. In 1994 a joint Coast Guard/state/industry incident command system task force drafted an ICS field operations guide and incident action plan forms that meet National Interagency Incident Management System and fire scope ICS requirements.


2014 ◽  
Vol 2014 (1) ◽  
pp. 1772-1783
Author(s):  
Drew Casey ◽  
John Caplis

ABSTRACT As observed during several recent major oil spills, most notably the BP Deepwater Horizon Oil Spill, the current regulatory planning standard for mechanical recovery equipment has been often scrutinized as an inadequate means for vessel and facility plan holders to calculate their oil spill equipment needs. Effective Daily Recovery Capacity, or EDRC, was developed during a negotiated rulemaking process following the enactment of the Oil Pollution Act of 1990. During an IOSC 2011 Workshop sponsored by the American Petroleum Institute (API), the Bureau of Safety and Environmental Enforcement (BSEE), and the U.S. Coast Guard, there was general agreement among workshop participants that EDRC is not an accurate planning tool for determining oil spill response equipment needs. In addition, many attendees agreed that EDRC should account for the skimmer system as a whole, not individual skimmer components such as pump nameplate capacity. In 2012, the Bureau of Safety and Environmental Enforcement (BSEE) and the U.S. Coast Guard initiated and completed a third-party, independent research contract to review the existing EDRC regulations and make recommendations for improving planning standards for mechanical recovery. The contractor's final report methodology is based on oil spill thickness as a fundamental component in calculating mechanical recovery potential, and it emphasizes the importance of response time on-scene and storage for recovered oil. This research provides a more realistic and scientific approach to evaluating skimmer system performance, and more accurately accounts for a wide range of operating conditions and external influences. The federal government, with input from the oil industry, OSRO community, and other interested stakeholders, now has a sound methodology to serve as a starting point for redesigning the current planning standard that more accurately reflects skimmer system performance.


2017 ◽  
Vol 2017 (1) ◽  
pp. 1453-1470
Author(s):  
LT Christopher M. Kimrey

ABSTRACT 2017-205 Catastrophic events like Deepwater Horizon, Exxon Valdez, major hurricanes, and other such anomalies have a tendency to overwhelm the initial crisis management leadership due to the chaotic nature of the event. The inability to quickly and accurately make critical assessments about the magnitude and complexity of the emerging catastrophe can spell disaster for crisis managers long before the response ever truly takes shape. This paper argues for the application of metacognitive models for sense and decision-making. Rather than providing tools and checklists as a recipe for success, this paper endeavors to provide awareness of the cognitive processes and heuristics that tend to emerge in crises including major oil spills, making emergency managers aware of their existence and potential impacts. Awareness, we argue, leads to recognition and self-awareness of key behavioral patterns and biases. The skill of metacognition—thinking about thinking—is what we endeavor to build through this work. Using a literature review and cogent application to oil spill response, this paper reviews contemporary theories on metacognition and sense-making, as well as concepts of behavioral bias and risk perception in catastrophic environments. When catastrophe occurs—and history has proven they will—the incident itself and the external pressures of its perceived management arguably emerge simultaneously, but not necessarily in tandem with one another. Previous spills have demonstrated how a mismanaged incident can result in an unwieldy and caustic confluence of external forces. This paper provides an awareness of biases that lead to mismanagement and apply for the first time a summary of concepts of sense-making and metacognition to major oil spill response. The views and ideas expressed in this paper are those of the author and do not necessarily reflect the views of the U.S. Coast Guard or Department of Homeland Security.


Sign in / Sign up

Export Citation Format

Share Document