Interaction of gas bubbles and oil droplets in subsea oil and gas blowouts – a new development of VDROP-J model.

2017 ◽  
Vol 2017 (1) ◽  
pp. 2017-194
Author(s):  
Lin Zhao ◽  
Michel C. Boufadel ◽  
Feng Gao ◽  
Thomas King ◽  
Brian Robinson ◽  
...  

Abstract (2017-194) The presence of methane bubbles in the oil and gas blowout could greatly reduce the oil droplet sizes. Bubbles tend to introduce energy into the system and separate oil droplets from each other. The interaction of oil droplets and gas bubbles in the near field of a blowout was investigated numerically using the VDROP-J model, whose droplet size distribution (DSD) was thoroughly calibrated. For this purpose, a new numerical scheme has been developed in VDROP-J to account for the interaction of gas bubbles and oil droplets in the blowout, giving simultaneous simulation of bubble and droplet size distribution along the discharged plume. Validation shows improvement of the model compared with the one without considering the gas bubble and oil droplet interactions. Effects of gas volume fraction on the droplet formation are also investigated. This new development will enhance the knowledge in subsea oil and gas blowouts.

2020 ◽  
Vol 10 (16) ◽  
pp. 5648
Author(s):  
Fei Wang ◽  
Lin Wang ◽  
Guoding Chen ◽  
Donglei Zhu

In order to improve the inadequacy of the current research on oil droplet size distribution in aero-engine bearing chamber, the influence of oil droplet size distribution with the oil droplets coalescence and breakup is analyzed by using the computational fluid dynamics-population balance model (CFD-PBM). The Euler–Euler equation and population balance equation are solved in Fluent software. The distribution of the gas phase velocity field and the volume fraction of different oil droplet diameter at different time are obtained in the bearing chamber. Then, the influence of different initial oil droplet diameter, air, and oil mass flow on oil droplet size distribution is discussed. The result of numerical analysis is compared with the experiment in the literature to verify the feasibility and validity. The main results provide the following conclusions. At the initial stage, the coalescence of oil droplets plays a dominant role. Then, the breakup of larger diameter oil droplet appears. Finally, the oil droplet size distribution tends to be stable. The coalescence and breakup of oil droplet increases with the initial diameter of oil droplet and the air mass flow increasing, and the oil droplet size distribution changes significantly. With the oil mass flow increasing, the coalescence and breakup of oil droplet has little change and the variation of oil droplet size distribution is not obvious.


2021 ◽  
Author(s):  
Puyuan Wu ◽  
Jun Chen ◽  
Paul E. Sojka ◽  
Yang Li ◽  
Hongjun Cao

Abstract Hundreds of millions of Air conditioning (AC) systems are produced each year. Many of them, especially small AC appliances, use rotary compressors as the system’s heat pump due to their simple structure and high efficiency in a small system. Lubricant oil is used in the rotary compressor to lubricate the moving parts, such as the crankshaft and the rolling piston, and to seal the clearance between the sliding parts, e.g., the clearance between the rolling piston and the cylinder, and the vane and the cylinder. As the compressed refrigerant vapor is discharged from the cylinder through the discharge port, part of lubricant oil in the cylinder would be carried by the vapor and atomize into small droplets in the lower cavity during the discharge process, which is complicated and highly-coupled. Some of these oil droplets would ultimately be exhausted from the compressor and enter other parts in the system, reducing the compressor reliability and deteriorating the heat transfer of the condenser and the evaporator in the system. Our previous research studied the atomization of the lubricant oil during the discharge process in the compressor’s lower cavity. However, the oil droplets’ behavior downstream of the lower cavity is unknown. Thus, studying the oil droplets’ behavior after passing through the rotor/stator can help understand how the rotor/stator would affect the droplet size distribution and movement, thus controlling the flow rate of escaped oil droplets. In this study, a hot gas bypass test rig is built to run a modified rotary compressor with sapphire windows right above the rotor/stator. The oil droplets’ size distribution and movement along the radial direction are obtained at the shaft’s rotating frequency of 30 and 60 Hz by shadowgraph. It is found that droplet size at 30 and 60 Hz varies little in the inner region of the rotor/stator clearance and would increase sharply above the clearance and keep increasing in the outer region of the clearance. More importantly, droplet velocity has a downward velocity component at the inner region and an upward velocity component at the outer region of the rotor/stator clearance. With the result of droplet size distribution and droplet velocity above the rotor/stator, we propose the model of the oil droplet’s path above the rotor/stator, which can be understood as the coupling of a swirling jet and a rotating disk.


2019 ◽  
Vol 7 (10) ◽  
pp. 329 ◽  
Author(s):  
Lars Robert Hole ◽  
Knut-Frode Dagestad ◽  
Johannes Röhrs ◽  
Cecilie Wettre ◽  
Vassiliki H. Kourafalou ◽  
...  

The effect of river fronts on oil slick transport has been shown using high resolution forcing models and a fully fledged oil drift model, OpenOil. The model was used to simulate two periods of the 2010 DeepWater Horizon oil spill. Metocean forcing data were taken from the data-assimilative GoM-HYCOM 1/50 ∘ ocean model with realistic daily river input and global forecast products of wind and wave parameters from ECMWF. The simulations were initialized from satellite observations of the surface oil patch. The effect of using a newly developed parameterization for oil droplet size distribution was studied and compared to a traditional algorithm. Although the algorithms provide different distributions for a single wave breaking event, it was found that the net difference after long simulations is negligible, indicating that the outcome is robust regarding the choice of parameterization. The effect of removing the river outflow was investigated to showcase effects of river induced fronts on oil spreading. A consistent effect on the amount and location of stranded oil and a considerable impact on the location of the surface oil patch were found. During a period with large river outflow (20–27 May 2010), the total amount of stranded oil is reduced by about 50% in the simulation with no river input. The results compare well with satellite observations of the surface oil patch after simulating the surface oil patch drift for 7–8 days.


2017 ◽  
Vol 2017 (1) ◽  
pp. 2762-2790 ◽  
Author(s):  
P.J. Brandvik ◽  
Ø. Johansen ◽  
E.J. Davies ◽  
F. Leirvik ◽  
D.F. Krause ◽  
...  

ABSTRACT New and novel results regarding effectiveness and use of subsea dispersant injection (SSDI) are presented in this paper. These findings are relevant for operational guidance, decision making and improvement of models of subsea releases of oil and gas. More specifically, the paper presents data from a comprehensive set of laboratory experiments to measure the initial formation of oil droplets and gas bubbles from a subsea blowout with and without SSDI. Many subsea blowout scenarios for oil and gas will form relatively large oil droplets (multiple millimeters) which rise rapidly through the water column to possibly form thick slicks on the ocean surface, potentially very near the source. On the other hand, smaller oil droplets (< 500 microns) rise more slowly and can stay suspended in the water column for days to weeks. Our laboratory studies examined the influence of different variables on the initial oil droplet size including oil release velocity, dispersant dosage, dispersant injection method, oil temperature, pressure, gas-to-oil ratio, oil type, and dispersant type. Results revealed that dispersant injection is highly effective at reducing droplet size. SSDI has, for this reason, a potential to reduce floating oil and associated volatile hydrocarbons that may threaten worker health and safety. Reduced surfacing may also reduce the amount of oil that reaches ecologically sensitive shoreline environments. Oil that disperses into the water column, as small droplets, may cause temporarily elevated exposure to marine organisms, but these droplets rapidly dilute and later naturally degrade. Dispersed oil dilutes in three dimensions rather than only the two dimensions available for surface oil, and mostly one dimension available to shoreline oil. Our data fit a modified Weber scaling algorithm that predicts initial oil droplet size for both laboratory and field scales. Predictions indicate that SSDI can reduce oil droplet sizes by an order of magnitude for field scales like those experienced in the Deep Water Horizon. In summary, this paper shows that SSDI applied to a subsea blowout is a highly efficient oil spill response tool that, under the appropriate conditions, can substantially delay oil surfacing, reduce the amount of surfacing and reduce the persistence of surface slicks by reducing oil droplet size. The net result is enhanced worker safety and health as well as reduced oil impacts on the surface and shoreline.


2018 ◽  
Vol 37 (11) ◽  
pp. 88-95 ◽  
Author(s):  
Jianwei Li ◽  
Wei An ◽  
Huiwang Gao ◽  
Yupeng Zhao ◽  
Yonggen Sun

Sign in / Sign up

Export Citation Format

Share Document