scholarly journals Quality Evaluation of Ready-To-Eat Garri Made from Cassava Mash and Mango Fruit Mesocarp Blends

2019 ◽  
pp. 1-9
Author(s):  
Joy N. Akume ◽  
Charles C. Ariahu ◽  
Israel O. Acham

Garri is a popular, easy to prepare, storable and low cost staple food made from cassava roots, but lacks the right balance of nutrients. The aim of this study was to evaluate the effect of incorporating mango fruit mesocarp flour as a supplement on the functional, physicochemical and sensory properties of garri. Four blend ratios and codes of 100:0 (C100M0G), 90:10 (C90M10G), 80:20 (C80M20G) and 70:30 (C70M30G) were developed for cassava mash and mango fruit mesocarp flour respectively. The proximate composition, vitamin and elemental composition, functional properties and sensory attributes of the samples were analysed using standard methods. Results from this study revealed that increase in mango fruit mesocarp flour supplementation in the garri increased the protein (1.01 to 1.42%), fat (negligible increase), ash (0.47 to 1.28%), carbohydrate (82.99 to 87.15%), Vitamin A (3.00 to 160.66 µg/100g), Vitamin C (10.23 to 33.34 mg/100g), calcium (0.43 to 1.04%), potassium (0.07 to 0.28%), sodium (0.05 to 0.22%) contents as well as sensory attributes whose values ranged from 5.7 to 7.9 on a 9 point hedonic scale; while decreasing the moisture (12.60 to 7.85%) and crude fibre (2.93 to 2.30%) contents in addition to the bulk density (0.66 to 0.51 g/ml), water absorption capacity (2.11 to 1.30 g/g) and swelling capacity (1.09 to 0.78 g/g). Therefore, adding mango fruit mesocarp flour as supplement has the ability to enhance the macro- and micro-nutrient content, functional properties and sensory characteristics of garri. Sensory evaluation revealed that C70M30G was the most preferred blend formulation.

Author(s):  
Florence A. Bello ◽  
Nkpoikana A. Akpaoko ◽  
Victor E. Ntukidem

Nutritive, less bulk and low cost complementary flour blends were produced from maize, carrot and pigeon pea. Five different blends of flour were formulated from maize, carrot and pigeon pea in the ratio of 100:0:0 (A), 90:5:5 (B), 85:5:10 (C), 80:5:15 (D) and 75:5:20 (E) while commercial formula (sample F) served as control. The formulated complementary flour blends were analyzed for their functional properties, proximate, selected mineral and vitamin compositions while the reconstituted samples (gruel) were evaluated for sensory attributes. The functional properties of the complementary flour blends showed less bulk density (0.72-0.76 g/ml) below the commercial formula (1.26 g/ml), low water and oil absorption capacity as well as swelling index. The proximate composition showed significant (p<0.05) increase and ranged from 4.08-4.91% moisture, 6.15-9.48% crude protein, 1.33-1.48% ash, 1.98-2.71% crude fibre, 3.07-4.15% lipid, and 82.93-86.72% carbohydrate. Vitamins A and C were also increased significantly as the levels of substitution increased from 1.80-2.14 µ/100g and 3.21-4.42 µ/100g, respectively. The sensory scores showed that sample A was most preferred followed by sample B in terms of general acceptability.


2019 ◽  
Vol 15 (3) ◽  
pp. 228-233
Author(s):  
Prabhavathi Supriya ◽  
Kandikere R. Sridhar

Background: Utilization of wild legumes has received prime importance in the recent past to compensate the scarcity of protein-rich foods as well as to tackle the protein energy malnutrition. Ripened split beans of Canavalia maritima devoid of seed coat and testa serve as traditional nutraceutical source for the coastal dwellers of Southwest India. Objective: The present study projects proximal and functional attributes of uncooked and cooked ripened split beans of C. maritima to be used in the preparation of functional foods. Methods: Proximal properties (moisture, crude protein, total lipids, crude fibre, carbohydrates and calorific value) and functional properties (protein solubility, gelation capacity, water-absorption, oilabsorption, emulsion qualities and foam qualities) of split beans were evaluated by standard methods. Results: Cooking did not significantly changed the crude protein, total lipids, ash, carbohydrates and calorific value, while it significantly increased the crude fibre. The protein solubility, water-absorption capacity, foam capacity and foam stability were significantly higher in uncooked than cooked beans. The cooked beans were superior to uncooked beans in least gelation concentration, low oil-absorption capacity, emulsion activity and emulsion stability. Conclusion: The functional properties of split bean flours were influenced by the proximal components like crude protein, total lipids and crude fibre. The energy-rich ripened split beans of C. maritima can serve as a new potential source for production of value added functional foods owing to their rich protein, rich carbohydrates, low-lipid and potential bioactive attributes.


2020 ◽  
Vol 45 (3) ◽  
Author(s):  
K. O. Soetan ◽  
A. A. Adeola

Underutilized and neglected legumes have numerous nutritional potentials with great contributions to food security but they are usually excluded from research and development agenda. This study evaluates the nutritional and functional properties of six different underutilized and neglected legumes; Lima bean (LB) (Phaseolus lunatus) (2006-009), Bambara groundnut (BG) (Vigna subterranea) (TVSU- 1482), winged bean (WB) (Psophocarpus tetragonolobus) (Tpt-48), jack bean (JB) (Canavalia ensiformis) (Tce-4), sword bean (SB) (Canavalia gladiata) (Tcg-4) and African yam bean (AYB) (Sphenostylis stenocarpa) (TSS-95) from the Genetic Resources Unit (GRU), International Institute of Tropical Agriculture (IITA), Ibadan, Oyo State, Nigeria. Nutritional and functional properties were evaluated using proximate composition, mineral analyses and functional properties like bulk density, water absorption capacity, oil absorption capacity, emulsion capacity and dispersibility. All the procedures were carried out using standard protocols. Statistical analysis was done using descriptive statistics. Results of proximate analysis showed that crude protein ranged from18.88 0.15%(WB) to 26.60±0.14%(AYB), crude fat ranged from 1.84 0.02% (JB) to 6.39 0.03% (BG), crude fibre ranged from 3.70 ±0.00% (AYB) to 5.04 0.03% (SB), ash ranged from 3.10 ± 0.14% (AYB) to 4.66 0.02% (LB), nitrogen free extract ranged from 55.60 0.04% (SB) to 62.97 0.12% (WB), moisture content ranged from 5.75 0.48% (AYB) to 10.77 0.03% (JB), dry matter ranged from 89.23 0.03% (JB) to 94.25 ± 0.488% (AYB) and gross energy ranged from 4.39 0.003 kcal/g (SB) to 4.66 0.00 (BG). Mineral content results revealed that calcium varied from 0.14 0.000% (LB) to 0.23 0.0003% (AYB), phosphorus varied from 0.20 0.0001% (AYB) to 0.38 0.00% (BG), sodium varied from 0.12 0.00% (LB and WB) to 0.35 0.0006% (AYB), potassium varied from 0.69 0.00% (LB) to 1.12 0.00% (BG), magnesium varied from 0.15 0.0002% (AYB) to 0.27 0.000% (BG) and iron varied from 44.84 0.03 (mg/g) (WB) to 80.98 0.0007(mg/g) (AYB). Results of functional properties showed that bulk density ranged from 0.45±0.04 g/mL (WB) to 0.77±0.08 g/mL (SB), water absorption capacity ranged from 168.33±0.03 g/100g (LB) to 183.62±0.01 g/100g (SB), oil absorption capacity ranged from 146.54 ±0.02 g/100g (LB) to 161.55±0.02 g/100g (JB), emulsion capacity ranged from 79.67 ±0.02 g/100g (LB) to 89.46±0.02 g/100g (SB) and dispersibility ranged from81.0±1.41%(SB) to 86.5±0.71% (BG). The study concluded that all the underutilized legumes have varying nutritional and functional properties, which should be exploited for nutritional benefits and industrial applications, as a solution to the problem of food shortage, especially in the developing countries.


2020 ◽  
pp. 53-62
Author(s):  
J. A. Ayo ◽  
E. Okoye

This study investigated the nutrient composition and functional properties of flour blend of acha and amaranth grains. The amaranth flour was substituted into acha flour at 5, 10, 15, and 20% and to produce acha-amaranth flour blend. The chemical composition and functional properties of the flour blend were determined. The protein, crude fibre, fat and ash content ranged from 7.66 - 12.93, 0.44 - 0.59, 0.15 - 1.01, and 0.11 - 0.96% with increase in added amaranth grain flour (0-20%). The moisture content and carbohydrate ranged from 12.46 – 11.7, 77.41 - 4.33% and decreased with increasing added amaranth flour.   The potassium, magnesium, phosphorus, vitamin B3, vitamin E and vitamin B6 content ranged from 0.09 - 0.14, 0.06 - 0.12, 0.19 - 0.34.14 - 0.24,  0.39 - 0.75 and 0.54- 0.69 mg/100 g increase with increasing in amaranth flour. The bulk density, swelling capacity ranged from 0.79 - 0.76 g/cm3 and 295.00 -275.00 ml/g, respectively with increases in added amaranth flour. The water absorption capacity, oil absorption capacity and foaming capacity ranged from  120.00  – 145.00, 110.00  – 135.00,  0.06  - 0.09, ml/g, respectively, with increasing acha substitution using amaranth flour. the 20% amaranth flour addition had the highest values of protein, fat, ash and crude fiber at 7.66 - 12.93, 0.44 - 0.59, 0.15 - 1.01, and 0.11 - 0.96% respectively. Amaranth incorporation had significant effects and contributed to the improvement of the flour blend. 


2019 ◽  
pp. 1-12
Author(s):  
M. O. Eke ◽  
D. Ahure ◽  
N. S. Donaldben

Cookies was produced from wheat (Triticum, spp), acha (Digitaria exilis), and sprouted soybeans (Glycine max) flour blends. The acha and soybeans were processed into flour and used to substitute wheat flour at different proportions with 100:0:0 wheat, acha and sprouted soybeans flour (WAS) as the control, 60:30:10, 50:40:10, 45:45:10, 40:50:10 and 35:55:10 (WAS). The functional properties of the wheat, acha and sprouted soybeans flour blends, physical properties and proximate compositions of the cookies were determined. The functional properties of the flour samples shows that the bulk density, wettability, water absorption capacity, oil absorption capacity and gelatinization temperature ranged from 0.63 g/ml-0.99 g/ml, 10.21-12.98 g/sec, 6.53-12.52 g/g, 0.52-0.66 g/g and 63.7-65.1ºC respectively. There were significant differences (p<0.05) in all the values. The proximate composition of cookies sample showed that crude protein, crude fat, crude fibre, ash, moisture and carbohydrate content ranged from 12.14-16.48 %, 2.10-3.74 %, 1.76-2.55 %, 2.75-8.55 %, 9.18-9.50 % and 59.37-72.06 % respectively. The physical properties of cookies showed that the weight, diameter, thickness and spread ratio ranged from 15.61-17.11g; 61.59-63.20mm; 9.88-11.99mm and 5.28-6.24 respectively. The control sample cookies from 100:0:0 (WAS), wheat, acha and sprouted soybeans flour blends sample had the highest sensory scores in terms of the taste, appearance, texture, aroma and overall acceptability. There was significant difference (p<0.05) in the colour, texture and aroma but there was no significant difference (p>0.05) in the taste and overall acceptability in 60:30:10, 50:40:10, 45:45:10, 40:50:10 and 35:55:10 (WAS) samples.


2018 ◽  
Vol 7 (2) ◽  
pp. 36-42
Author(s):  
Gilian Tetelepta ◽  
Agustina Souripet ◽  
Mary O N Somalay

Cassava peel has high nutrient content and has the opportunity to be processed into chips. Processing of cassava peel chips requires soaking treatment to produce a crisper texture. The purpose of this study was determining the right type of soaking solution to produce the best cassava peel chips. The result showed that the immersion treatment with CaCO3 solution produced chips with the best physical properties having the hygroscopic value, absorption capacity, expansion volume of 0.105g, 12.95%, and 10,05%, respectively. Organoleptically the chips were liked for its task (2.30), somewhat like for its colour (2.47) texture were liked (2.53) and overall the chips were liked (2.50) by panelist. The chips were also having a brown colour (3.03) and a crispy texture (3.13). Keywords: cassava peel, chips, soaking solution   ABSTRAK Kulit ubi kayu memiliki kandungan gizi yang tinggi dan berpeluang untuk diolah menjadi keripik. Pengolahan keripik kulit ubi kayu memerlukan perlakuan perendaman agar menghasilkan tekstur yang lebih renyah. Tujuan penelitian ini untuk menentukan jenis larutan perendaman yang tepat untuk menghasilkan keripik kulit ubi kayu terbaik. Hasil penelitian menunjukkan bahwa perlakuan perendaman dengan larutan CaCO3 menghasilkan sifat fisik keripik terbaik dengan nilai higroskopis 0,105g, daya serap 12,95%, volume pengembangan 10,05 % dan berdasarkan uji hedonik menunjukkan rasa suka (2,50), warna agak suka (2,47), tekstur suka (2,53) dan overall suka (2,50) sedangkan untuk uji mutu hedonik menunjukkan warna coklat (3,03) dan tekstur renyah (3,13). Kata kunci: keripik, kulit ubi kayu, larutan perendam


2020 ◽  
Vol 39 (01) ◽  
Author(s):  
Anosike Francis Chidi ◽  
Nwagu Kingsley Ekene ◽  
Ekwu Francis ◽  
Nweke Friday Nwalo ◽  
Nwoba Sunday Theophilus ◽  
...  

Studies were conducted on the chemical, functional, pasting properties of the flour blends and sensory properties of ukpo oka formulated from of maize- African yam bean flour (AYBF) in order to improve the nutritional content of maize and encourage a wider utilization of the legume AYB. Supplementation of maize and African yam flour was done at 100:0, 50:50, 80:20, 60:40 and 20:80 maize: African yam bean flour, respectively. Proximate composition, functional properties, pasting properties of the flour blends was determined and sensory attributes of the products were also evaluated. The result showed that supplementation of maize with African yam bean flour significantly increased the protein, ash and fiber content of the flour blends with values ranging from 3.91 - 11.08%, 2.90 - 6.60%, 0.67 - 1.82% for protein, ash and fiber contents respectively. The protein, ash and fiber contents increased with addition of African yam bean flour while carbohydrate content of maize- African yam bean blends decreased with increase in the level of African yam bean. The values for functional properties ranged from 0.72 – 0.82g/ml, 99.33 – 323.33%, 9.01 – 19.65%, 690.00 - 978.33%, 0.67 – 1.13%, 0.484 – 1.038% for bulk density, foaming capacity, emulsion capacity, swelling capacity, water absorption capacity and oil absorption capacity respectively. Values for pasting properties of the flour blends expressed in rapid visco unit (RVU) ranges from 129.25 – 209.40, 22.55 – 67.93, 60.21 – 124.62 , 145.25 – 247.67 , 83.37 – 84.56 , 5.47 – 5.97 and 87.19 – 141.35 for peak viscosity, break down viscosity, set back viscosity, final viscosity, pasting temperature, peak time and trough respectively. Set back viscosity and final viscosity increased with increase in the levels of African yam bean while break down viscosity decrease with the increase in the levels of African yam bean. The products were highly rated in all sensory attributes evaluated however aroma decreases with increase in the levels of AYBF. Product made from flour blend 50:50 was the most preferred in terms of general acceptability.


2020 ◽  
Vol 4 (2) ◽  
pp. 300-307
Author(s):  
J. Ndife ◽  
K. S. Abasiekong ◽  
B. Nweke ◽  
A. Linus-Chibuezeh ◽  
V. C. Ezeocha

Most snacks are prepared from basically cereal flours which are nutritionally inadequate. There is the need to complement the nutrient content of these snacks by varying the food sources. Chin-chin snacks were produced from composite flours of Maize, soybean and OFSP with the following formation; sample A (50%: 25%: 25%), B (25%: 25%: 50%), C (25%: 50%: 25%), D (0%: 50%: 50%) and E (50%: 50%: 0%). Wheat flour (100%) served as the control F. The flour bends were analysed for functional properties while the chin-chin snacks were analysed for their nutrient and sensory qualities. The result of functional properties of the flours showed that bulk density of wheat flour (F) was the highest (0.746 g/ml). OFSP flour enhanced the water absorption capacity of the flour blends. Flour blends with soybean recorded higher values in foam capacity (11.20 - 22.55%). In proximate composition, the moisture was low (3.80 – 4.80%) in the chin-chin. Higher fibre content (2.60 - 4.20%) was obtained in samples containing higher proportion (50%) of OFSP. Samples D (19.38%) and C (18.80%) with higher soybean, recorded higher protein values. The mineral and the vitamin contents of snacks from composite flours were higher than that of the control F. Vitamin B1, B2, B3 and β-carotene contents of the snacks were enhanced by OFSP. The sensory evaluation showed preference for snack F (100% wheat flour) followed by snack A (50% maize, 25% soybean and 25% OFSP). However, improved nutrient dense chin-chin snacks were produced from the composite flours.


2020 ◽  
Vol 18 (1) ◽  
pp. 88-102
Author(s):  
A. T. OMIDIRAN ◽  
O. A. ADERIBIGBE ◽  
O. P. SOBUKOLA ◽  
O. O. AKINBULE

This study evaluated some quality attributes of pancakes from peeled and unpeeled sweetpotato flours and cassava starch. Cassava starch was substituted up to 30% of the total composite flour. The proximate composition, colour, carotenoid and functional properties of the different flour blends were determined. The flour blends were processed into pancakes and the proximate composition and sensory acceptability of the pancakes were determined. Data obtained were subjected to analysis of variance. The result showed that they were significant differences (p<0.05) in the functional properties of the flour blends. Bulk density, Water absorption capacity, Oil absorption capacity, swelling capacity ranged from 0.70 to 0.78 g/ml, 1.87 to 2.30 g/ml, 1.02 to 1.40 g/ml and 5.18% to 6.66%  respectively. There were significant differences (p<0.05) in the proximate composition of the pancake samples. The values ranged from 42.76 to 45.53%, 2.13 to 3.98%, 9.06 to 10.34%, 5.01 to 7.18%, 3.75 to 6.01% and 29.19 to 35.33% for moisture, ash, fat, protein, crude fibre and carbohydrate contents, respectively. Pancake produced from 100:0 peeled and unpeeled sweetpotato flour had the highest score for overall acceptability which can compare favorably, with pancakes from wheat flour which is the control sample. In conclusion, sweetpotato flour blended with cassava starch at different ratio gave good proximate and functional properties which resulted in pancakes of good quality attributes.    


Author(s):  
Jelang Jelku D. Sangma ◽  
W. Jessie Suneetha ◽  
B. Anila Kumari ◽  
K. B. Suneetha Devi

Foxtail millet has been consumed similar to rice from times immemorial and many products like soups, vermicelli, pasta and malt mixes were done in recent times to increase the nutrient content of various food products. Due to climate changes, millet usage is increasing nowadays as they require less irrigation and can grow in arid and semi-arid region to achieve nutrition security. The present research was carried out at Post Graduate & Research Centre, PJTSAU, Rajendranagar, Hyderabad using malted foxtail millet to increase the carbohydrates, energy, vitamin C, bioavailability of protein and other nutrients. Malt mix were prepared from germinated malt foxtail millet, roasted bengal gram and milk powder in five different formulations. Sensory evaluation was done using 9-point hedonic scale for selection of best accepted and it was found that germinated foxtail to roasted bengal gram dal in the ratio of 2:1 was best accepted.  This malt mix along with control germinated foxtail was further analysed for proximate composition and vitamin C content. The selected composite’s moisture, ash, fat, protein and crude fibre content were higher for test foxtail millet mix whereas carbohydrates, energy and vitamin C were high for control foxtail millet mix.  The lower carbohydrate and energy content as well as higher protein and crude fiber level in the test foxtail millet mix makes it an ideal supplementary food with dense nutrients for children between 1 – 3 years of age. The development of malt mix was carried out for a period of six month including the period of standardization of germination conditions for foxtail millet. 


Sign in / Sign up

Export Citation Format

Share Document