scholarly journals Functional and Pasting Properties of Composite Flours from Triticum durum, Digitaria exilis, Vigna unguiculata and Moringa oleifera Powder

2020 ◽  
pp. 40-49
Author(s):  
C. A. Orisa ◽  
S. U. Udofia

The objective of this study was to determine the functional and pasting properties of composite flours from Triticum durum (wheat), Digitaria exilis (acha), Vigna unguiculata (cowpea) flours and Moringa oleifera leaf powder. The flour samples were mixed in a four by four factorial, in complete randomized design (CRD) to formulate the composite blends at four different levels (25, 50, 75 and 100) which gave 16 samples. The statistical analysis of data collected was used to select five (5) generally accepted composite flour samples (wheat, acha, cowpea and moringa oleifera leaf powder flours) with ratio of 100:0:0:0, 75:25:0:0, 0:50:50:0, 50:23:25:2 and 75:25:0:0, respectively. The flour samples were analyzed for functional and pasting properties using standard methods. Results of the functional properties showed that water absorption capacity of the composite flour blend ranged from 0.87-1.11g/g, bulk density 0.39-0.42 g/ml, least gelation concentration 2.00-4.00%, solubility 19.46-25.35%, wettability 2.57-4.02min, oil absorption 1.61-1.79g/g and least gelation temperature 62.00-68.50oC. The functionality of the composite flours such as water and oil absorption capacities, least gelation concentration and bulk density were improved when cowpea was incoporated into the blends than for moringa oleifera leaf powder and acha flour. On the other hand, wettability and solubility of the flour blends were improved when acha was incorporated into the blend. Results of pasting properties showed that peak viscosity ranged from 73.04-385.79RVU, trough viscosity 57.96-341.42RVU, break down viscosity 15.08-44.38RVU, final viscosity 109.54-581.58RVU, set back viscosity 51.58-240.17RVU, pasting time 5.70-6.40min and pasting temperature 50.08oC-50.35oC. These properties were shown to be higher when cowpea was incorporated into the flour blends than for moringa oleifera leaf powder and acha flour. However, pasting properties of the composite flour blends were higher than 100% wheat flour. This result therefore showed that composite flour from wheat, acha, cowpea and Moringa oleifera leaf powder has improved functionality and high pasting properties than the individual wheat flour and will serve as a useful ingredient in food formulations such as in dough, soups and baked products.

2021 ◽  
pp. 23-35
Author(s):  
J. N. Okafor ◽  
J. N. Ishiwu ◽  
J. E. Obiegbuna

The aim of this research was to produce acceptable ‘fufu’ from a mixture of sorghum, millet, and African yam bean flours that will have a moderate carbohydrate and protein content with most optimized texture. The functional and sensory properties of flour blends produced from Sorghum, Millet and African yam bean was studied. Sorghum, Millet and African yam bean were processed into flour and mixed at different ratios to obtain composite flours. The flour formulations obtained were analyzed for water absorption capacity, bulk density, least gelation concentration , and viscosity .The  water absorption capacity ranged from 1.00 to 3.00,  the bulk density ranged from 0.56 to 0.82;the least gelation concentration ranged from 5.77 to 6.87,while the viscosity ranged from 0.956 to 9.30.Also proximate composition of the individual flours before formulation  was analyzed, it ranged from 6.13 to 8.46 moisture, 2.00 to 4.67 ash, 0.17 to 8.00 fiber,5.47 to 8.61 fat, 7.57 to 21.84 protein, 58.34 to 69.27 carbohydrate.The sensory values ranged from 5.60 to 6.45 for taste; 4.25 to 6.85  for colour; 5.15 to 6.80 for texture; 3.85 to 5.70 for aroma; 5.45 to 6.45 acceptability. Sample 10 (with the ratio of 40:70:20) had the highest rating for general acceptability. It was observed that sample 1(with the ratio of 60:50:60) had the lowest rating in taste and aroma. The mixture components that could produce optimum texture was determined through optimization plot. This work has demonstrated that acceptable ‘fufu’ with moderate protein and carbohydrate could be successfully produced using composite flours of sorghum, millet and African yam bean.


2021 ◽  
pp. 108201322110694
Author(s):  
Ashura Katunzi-Kilewela ◽  
Leonard MP Rweyemamu ◽  
Lilian D Kaale ◽  
Oscar Kibazohi ◽  
Roman M Fortunatus

The study established the proximate composition, pasting, and functional properties of cassava flour (CF) blended with chia seeds flour (CSF). Composite flour was prepared by blending CF with CSF in the ratios of 95:05, 90:10, 85:15, 80:20, and 75:25 with CF and CSF used as controls, respectively. The effect of blending significantly (p < 0.05) increased protein, fat, fibre, and ash contents as CSF increased. On other hand, moisture and carbohydrate contents decreased significantly. Pasting properties of composite flour blends decreased significantly (p < 0.05) as the incorporation of CSF increased and a noticeable change was observed for composite flour (75:25) except for peak time and pasting temperature. Functional properties of water absorption capacity (WAC) of CSF were significantly different with CF and composite flour blends. Oil absorption capacity (OAC) of CF and CSF were significantly different, while the composite flour blends had varied OAC due to the inclusion of the different amounts of CSF. The swelling capacity (SC) of CF and CSF were not significantly different, but composite flour blends were significantly different from both CSF and CF. The least gelation concentration (LGC) and bulk density (BD) increased significantly as chia seeds increased. Increased concentration of chia CSF in the composite flour blends showed to alter the functional properties. This study recommends composite flour 75:25 for processing semiliquid products like porridge due to reduced pasting properties values that may be associated with increased energy density compared to CF.


2021 ◽  
pp. 63-77
Author(s):  
T. A. Dendegh ◽  
B. M. Yelmi ◽  
R. A. Dendegh

Quality attributes of stiff porridges prepared from Pearl millet and African Yam Bean (AYB) flour blends were studied. Various ratios such as A (100% pearl millet), B (90:10), C (80:20), D (70:30), E (60:40) and F (50:50) of pearl millet and African Yam Bean (AYB) composite flours were mixed and analyzed for functional, proximate composition, mineral elements and sensory properties. The blends were then prepared into stiff porridges for sensory evaluation using a 20-man sensory panel. Substitution of African Yam Bean with Pearl Millet led to increases in moisture (24.29 to 37.50%) protein (10.90 to 19.70%), fibre (1.30 to 2.00%), Ash (0.43 to 0.55%) and fat (3.80 to 5.20%) while the carbohydrate content of the blends decreased (from 62.07 to 39.85%) respectively. Functional properties such as bulk density decreased with increase in AYB from (1.80 to 0.72 g/ml, swelling index also increases from 0.75 to 0.56 g/ml, water absorption capacity decreases from 2.20 to 2.64 g/ml) and Least Gelation Concentration (6%). The sensory attributes of stiff porridges were not adversely affected by African Yam Bean flour. Therefore, it should be possible to incorporate up to 50% of legumes such as African Yam Bean with Pearl Millet in the preparation of stiff porridges.


2021 ◽  
Vol 13 (1) ◽  
pp. 57-68
Author(s):  
Muluken K. Kassa ◽  
Shimelis A. Emire

This research was conducted to investigate the pasting, rheological and functional properties, and gluten-free biscuit making potential of a composite flour prepared from grains of amaranthus, sorghum and finger millet. The formulation for the composite flour was obtained from D-optimal mixture design ratio using Design-Expert. The rheological and pasting properties of the composite flours were determined, while the proximate composition, physical dimensions, mineral concentration and sensory quality attributes of the biscuits were assessed. The results showed that there were significant (p&lt;0.05) differences in the pasting profile of the control and amaranthus based composites flour except for pasting temperature. Water absorption capacity and water soliblity index increased as the blending ratio of amaranthus flour increased, while oil absorption capacity decreased. The proximate composition evaluation 13.75, 2.04, 1.77 and 31.75% were found to be the highest values of the biscuit samples in terms of protein, crude fiber, ash and crude fat, respectively. Mineral analaysis was carried out and there was a significant (p&lt;0.05) difference in Fe, Ca, Zn and P content among the biscuit samples made from the composite flour blends. Similarly, the sensory evaluation indicated that there was a significant (p&lt;0.05) differences in apperance, colour, texture, flavour and overall acceptability among the composite biscuit samples. However, the difference was insignificant (p&lt;0.05) in crispiness of biscuit samples. In a nut shell this research revealed that a nutritionally dense gluten-free biscuits can be formulated without affecting the quality attributes of the biscuit. Thus, the composite flours can be used for the preparation of gluten free food products in africa, where the crops have not been effectively utilized in food processing industries.


Food Research ◽  
2020 ◽  
Vol 4 (6) ◽  
pp. 1820-1831
Author(s):  
Hasmadi M. ◽  
Noorfarahzilah M. ◽  
Noraidah H. ◽  
M.K. Zainol ◽  
M.H. Jahurul

Incorporation of composite flour into wheat flour for bakery goods production is expected to produce an effect in the functional properties of the blended samples. Functional properties of composite flour have been studied in most of the developing countries which used and imported a large amount of wheat flour to fulfil the increasing number of consumers as the higher demand in the development of bakery and pastry products. In this review paper, the characteristics of composite flours were reviewed to determine the suitability of the raw materials to be used in the production of food products. The functional properties such as water and oil absorption capability, foam ability, emulsion capability, least gelation concentration, and particle size distribution might indicate the capability of the composite flour before proceeding to the development of food products were reviewed. The functionality of composite flour was found to be beneficial to enhance the variety of food products with acceptable appearance, organoleptic, nutrition, and low cost to fulfil consumer demands.


2017 ◽  
Vol 3 (1) ◽  
pp. 1278871 ◽  
Author(s):  
Adebanjo A. Badejo ◽  
Adeboye P. Osunlakin ◽  
Ademola Famakinwa ◽  
Atinuke O. Idowu ◽  
Tayo N. Fagbemi ◽  
...  

2021 ◽  
Vol 21 (105) ◽  
pp. 18965-18979
Author(s):  
MS Wasswa ◽  
◽  
R Fungo ◽  
JH Muyonga ◽  

Undernutrition is a major public health concern in Uganda. Locally available nutrient dense diets can help reduce the problem of undernutrition. Utilisation of cowpea leaf powder in preparing composite porridge blends depends on sensory acceptance of the consumers. A Nutrisurvey software was used to formulate two composite flour blends, namely maize and millet in a ratio 2:8 and cowpea-maize in a ratio of 1:9 to achieve the daily requirement of protein for children. The study developed a process for the production of composite cowpea flour from finger millet flour and maize flour and followed a one factor design in which maize flour (MF) and millet flour (MMF) was substituted with cowpea leaves flour (CPL). The composites were dried using refractance window drying technology. The proximate composition of the composite flours were determined using standard methods while sensory acceptability of porridges was rated on a five-point Likert scale using an untrained panel. Results indicated a significant (p < 0.05) increase in protein (10.9 to 13.4%), dietary fibre (11.01 to 13.0%) and lipids (4.71 to 5.3%) contents for cowpea-millet composite porridge. For cowpea-maize composite flour, a significant (p < 0.05) increase in protein (5.9 to 7.6%), dietary fibre (1.47 to 3.3%) and lipids (2.84 to 3.3%) was also observed. Sensory evaluation indicated that between the two composite porridges, the cowpea-millet porridge blend was significantly (P≤0.05) more appealing in terms of colour (3.61±0.8), aroma (2.96±0.2), taste (3.24±0.6), texture (3.62±0.6) and general acceptability (3.61±0.8) to the panellists than the cowpea-maize porridge blend. The cowpea-millet and cowpea-maize composite flours can contribute more than 100% of the recommended dietary allowance of protein and carbohydrate requirements for children aged 0-8 years. The study findings indicate that the cowpea-based composite flours have the potential to make a significant contribution to the improvement in the nutritional status of infants and children in developing countries.


2019 ◽  
pp. 1-12 ◽  
Author(s):  
Justina Y. Talabi ◽  
Babawande A. Origbemisoye ◽  
Beatrice O. Ifesan ◽  
Victor N. Enujuigha

The nutrient composition and the acceptability of biscuit from composite flours of wheat, Bambara groundnut (Vigna subterranea), Ground bean seed (Macrotyloma) and Moringa seed (Moringa oleifera) were evaluated. Bambara groundnut (Vigna subterranea), Ground bean seed (Macrotyloma) and Moringa seed (Moringa oleifera) were dried, and processed into flour. The flour blends developed was used as a substitute for wheat flour as composite flour. The resulting mixtures were then used to produce biscuits at different ratios of wheat flour to flour blends; 100:0, 90:10, 80:20 and 70:30 level of the flour blends. The pasting properties, proximate composition, minerals, physical (spread ratio, weight, thickness and colour) and sensory properties of the composite biscuit were evaluated. The pasting properties of the flours showed that pasting temperature ranged from 68.50°C - 70.0°C and the peak viscousity range from 101.17 RVU – 207.17 RVU, while Break down (43.0 RVU) was highest in 90% wheat: 10% (Bambara- groundnut-ground bean seed- moringa seed flour) (WFF1). The protein content increased from 12.50% in the control (100% wheat flour) to a range of 14.40% - 16.19% in the biscuits; crude fibre decreased from 2.83 to 2.40 - 1.84%, ash content increased from 1.26% to a range of 1.53 - 2.01%, while carbohydrate and energy value reduced from 69.20 to 65.54 - 63.36% and 384.04 Kcal/100 g to 391.34 - 391.55 Kcal/100 g respectively. As the ratio of blends level increase, the thickness, diameter and weight increased but the spread ratio decreased. In conclusion incorporation of bambara groundnut, ground bean seed and moringa seed flour blends played important role in enhancing the nutritional properties of biscuits through improving their protein content, energy value and mineral elements especially calcium and potassium.


2020 ◽  
pp. 38-47
Author(s):  
Obomeghei, Abdulkareem Adamu ◽  
Ebabhamiegbebho, Peter Akhere

Successful use of non-wheat flours for snacks production depends on their functional and pasting properties. The use of orange fleshed sweet potato and red Bambara groundnut flour blends for snack production have not been explored. The objective of this work was to formulate flour blends using orange fleshed sweet potato and red Bambara groundnut and to evaluate their proximate compositions and processing properties for possible application in the production of high protein and pro-vitamin A enriched  snacks for consumers especially children in developing countries. Flour blends were formulated in ratio 60:40, 50:50, 40:60, 30:70 (orange fleshed sweet potato to red bambara groundnut). The protein and fat increased from 12.95±0.05% (60:40) to 16.87±0.02% (30:70) and 2.17±0.03% (60:40) to 3.05±0.04% (30:70) respectively. Ash and carbohydrate decreased from 2.52±0.04% (60:40) to 2.27±0.05% (30:70) and 60.38±0.44% (30:70) to 69.09±0.30% (60:40). The water absorption capacities for the flour blends ranged between 28.03±0.17% and 50.40±0.40%. Oil absorption capacity was between 16.70±0.12% and 31.40±0.13%. Swelling capacities was highest in 30:70 (2.48±0.06%) and lowest in 60:40 (2.13±0.07%). Solubility was between 9.27±0.59% and 11.67±0.70%. Bulk density ranged between 0.77±0.01 g/ml and 0.87±0.02 g/ ml. Peak, breakdown, setback and final viscosities increased from 92.88±3.47 to109.34±0.23; 20.33±3.66 to 21.75±1.17; 32.16±0.84 to 44.59±0.25 and 102.71±1.00 to 132.00±1.06 RVU respectively. This study indicate that the 50% sweet potato and 50% red bambara groundnut flour blend will make a better product judging from its functional and pasting properties compared to other blends but will require a little more energy to cook comparing their pasting temperature and time.


2019 ◽  
Vol 11 (1) ◽  
pp. 21-29 ◽  
Author(s):  
Folasade Maria Makinde ◽  
Ayobami Opeyemi Eyitayo

The feasibility of partially replacing wheat flour with coconut flour in baked products was investigated. Matured coconut (Cocos nucifera) endocarp was grated for the extraction of milk, dried, milled,and pulverized. Five blends of composite flour were prepared by combining wheat flour with 10% to 50% of partially defatted coconut flour,respectively. The 100% wheat flour served as control. The samples were analysed for proximate, mineral, functional,and pasting properties using standard procedures. The proximate analysis indicated 5.52 % moisture, 23.6% protein, 11.14% fibre, 5.4% fat, 5.21% ash,and 49.1% carbohydrate for coconut flour. The ranges of the proximate composition forthe flour blends were:moisture (4.79-5.55%), protein (14.9 -19.1%), fibre (0.44 -5.12%), fat (2.9 -5.3%), ash (0.68-2.13%), carbohydrate (62.7-76.2%),and energy (315.26-335.28 kCal). The values for moisture, protein, fat, fibre,and ash increased with the increasing levels of coconut substitution,except for carbohydrate and energy contents. There were significant differences (p≤0.05) in calcium, magnesium, potassium, phosphorus, iron,and zinc concentrations of the samples. The range of values obtained for these parameters was1.32-2.59 mg/kg, 2.60-3.83 mg/kg, 12.10-16.89 mg/kg, 12.40-18.50 mg/kg,0.50-1.22 mg/kg and 0.30-1.23 mg/kg, respectively. The ranges of functional properties were:loosed bulk density (0.28-0.49 g/mL),packed bulk density (0.44-0.75 g/mL), pH (5.77-6.57), swelling capacity (3.89-6.56%), water absorption capacity (0.89-3.97 ml/g),oil absorption capacity (1.26-3.20 ml/g),and gelation (12.0-18.0%). The pasting characteristics showed significant differences betweenthe100% wheat flour and coconut substituted samples. The results revealed modifications in nutritional, functional,and pasting properties in blends containing fractions of partially defatted coconut flour,which suggeststheir application in diverse food products.


Sign in / Sign up

Export Citation Format

Share Document