scholarly journals Energy Evaluation of the Mechanical Drying of the Grain of Coffea arabica from Honduras

2021 ◽  
pp. 8-14
Author(s):  
Fredy Torres Mejía ◽  
Jhunior Marcía Fuentes ◽  
Juan Torres Mejía ◽  
Flavio Hernández Bonilla ◽  
Ricardo Santos Alemán ◽  
...  

The aim of this research work was to evaluate the methods of mechanical drying of coffee beans (Coffea arabica) from energy evaluations. The control variables were the drying of the grain and energy was used as the response variable, measured in Tonnes of Oil Equivalent (TEP), Barrels of Oil Equivalent (BEP), and Tonnes of Carbon Dioxide Equivalent (Ton CO2eq). The evaluations on the three methods of mechanical coffee drying indicate that the rotary dryer requires 1.0 TEP equivalent to 1.017 kg CO2eqkg-1 in dry parchment coffee (CPS), however, the vertical drying method requires 1.12 TEP (0.616 kg CO2eqkg-1 in CPS) and the static dryer requires 0.5 TEP (0.33 Kg CO2eqkg-1 in CPS). Furthermore, the biomass energy consumption in the rotary dryer is 12.60 MJkg-1, in the vertical dryer it is 7.46 MJkg-1, and the static dryer is 3.91 MJkg-1. These results indicate that the rotary dryer uses 91.95% of the biomass energy, the vertical dryer uses 90.31%, and the static dryer 90.68%. Concluding that rotary drying has a higher biomass energy consumption and reduces CO2 emissions kg-1 in dry parchment coffee, this method is also preferred by cuppers, as it preserves the sensory qualities of the coffee and contributes to reducing the impact. the environment in the consumption of electrical energy and the reduction of CO2 emissions. However, these predictors need more work to validate reliability.

2019 ◽  
Vol 11 (8) ◽  
pp. 2421 ◽  
Author(s):  
Qiu Chen ◽  
Haoran Yang ◽  
Wenguo Wang ◽  
Tianbiao Liu

Trends of rural residential energy consumption and CO2 emission should be evaluated in a broader context of urbanization, especially in developing countries where urbanization is in its expanding stage. In this study, we use the STIRPAT model and various panel regression techniques to explore the impact of urbanization on rural residential energy consumption and CO2 emission by using data from Southwest China. The results show that a higher urbanization level contributes to higher total residential energy intensity. Increases in net income per capita can decrease the intensities of traditional biomass energy and non-biomass energy, while industrialization has a negative effect only on non-biomass energy intensity. Land use change driven by urbanization can also lower the intensities of total residential energy, traditional biomass energy and non-biomass energy. Moreover, the impact of total residential energy intensity on emissions is positive. Particularly, traditional biomass energy accounts for most of CO2 emissions derived from the use of residential energy. As urbanization is expected to increase in the developing world and lead to more CO2 emissions from rural areas, policies which intend to reduce the intensity of traditional biomass energy, promote biogas and industrialization, and raise net income of rural residents can be used as effective mitigation strategies.


2016 ◽  
Vol 21 (1) ◽  
pp. 9-20
Author(s):  
Ersalina Tang

The purpose of this study is to analyze the impact of Foreign Direct Investment, Gross Domestic Product, Energy Consumption, Electric Consumption, and Meat Consumption on CO2 emissions of 41 countries in the world using panel data from 1999 to 2013. After analyzing 41 countries in the world data, furthermore 17 countries in Asia was analyzed with the same period. This study utilized quantitative approach with Ordinary Least Square (OLS) regression method. The results of 41 countries in the world data indicates that Foreign Direct Investment, Gross Domestic Product, Energy Consumption, and Meat Consumption significantlyaffect Environmental Qualities which measured by CO2 emissions. Whilst the results of 17 countries in Asia data implies that Foreign Direct Investment, Energy Consumption, and Electric Consumption significantlyaffect Environmental Qualities. However, Gross Domestic Product and Meat Consumption does not affect Environmental Qualities.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3165
Author(s):  
Eva Litavcová ◽  
Jana Chovancová

The aim of this study is to examine the empirical cointegration, long-run and short-run dynamics and causal relationships between carbon emissions, energy consumption and economic growth in 14 Danube region countries over the period of 1990–2019. The autoregressive distributed lag (ARDL) bounds testing methodology was applied for each of the examined variables as a dependent variable. Limited by the length of the time series, we excluded two countries from the analysis and obtained valid results for the others for 26 of 36 ARDL models. The ARDL bounds reliably confirmed long-run cointegration between carbon emissions, energy consumption and economic growth in Austria, Czechia, Slovakia, and Slovenia. Economic growth and energy consumption have a significant impact on carbon emissions in the long-run in all of these four countries; in the short-run, the impact of economic growth is significant in Austria. Likewise, when examining cointegration between energy consumption, carbon emissions, and economic growth in the short-run, a significant contribution of CO2 emissions on energy consumptions for seven countries was found as a result of nine valid models. The results contribute to the information base essential for making responsible and informed decisions by policymakers and other stakeholders in individual countries. Moreover, they can serve as a platform for mutual cooperation and cohesion among countries in this region.


2021 ◽  
Vol 13 (23) ◽  
pp. 13457
Author(s):  
Hala Aburas ◽  
Isam Shahrour

This paper analyzes the mobility restrictions in the Palestinian territory on the population and the environment. The literature review shows a scientific concern for this issue, with an emphasis on describing mobility barriers and the severe conditions experienced by the population due to these barriers as well as the impact of mobility restrictions on employment opportunities. On the other hand, the literature review also shows a deficit in quantitative analysis of the effects of mobility restrictions on the environment, particularly on energy consumption and greenhouse gas emissions. This paper aims to fill this gap through a quantitative analysis by including data collection about mobility restrictions, using network analysis to determine the impact of these restrictions on inter-urban mobility, and analysis of the resulting energy consumption and CO2 emissions. The results show that mobility restrictions induce a general increase in energy consumption and CO2 emissions. The average value of this increase is about 358% for diesel vehicles and 275% for gasoline vehicles.


2017 ◽  
Vol 54 (3) ◽  
pp. 50-57 ◽  
Author(s):  
I. Grinevich ◽  
Vl. Nikishin ◽  
N. Mozga ◽  
M. Laitans

Abstract The paper deals with the possibilities of reducing the consumption of electrical energy of the impact screwdriver during the assembly of fixed threaded joints. The recommendations related to a decrease in electrical energy consumption would allow reducing product costs but so far there have been no such recommendations from the producers of the tool as to the effective operating regimes of the impact screwdrivers in relation to electrical energy consumption and necessary tightening moment of the nut. The aim of the study is to find out the economical operating mode of the electrical impact screwdriver when assembling fixed threaded joints. By varying the set speed of the rotor head and working time of the impact mechanism, there is an opportunity to determine electrical energy consumption of the tool for the given tightening moment. The results of the experiment show that at the same tightening moment obtained the electrical energy consumption of the impact screwdriver is less at a higher starting set speed of the rotor head but shorter operating time of the impact mechanism than at a lower speed of the rotor head and longer operating time of the impact mechanism.


2019 ◽  
Vol 233 (10) ◽  
pp. 1447-1468 ◽  
Author(s):  
Kajal Gautam ◽  
Sushil Kumar ◽  
Suantak Kamsonlian

Abstract Reactive dyes are essential materials for the modern lifestyle due to rapid industrialization and urbanization, but they cause adverse effects on the environment. This research work aimed to decolourize the synthetic aqueous solution containing Reactive Black B (RBB) dye using electrocoagulation (EC) process with iron electrodes in batch reactor. The effect of operational parameters such as initial pH (3–9), the distance between electrodes (0.5–2 cm), current density (1.1–8.4 mA/cm2) and initial dye concentration (100–400 mg/L), was investigated in the presence of sodium chloride to maintain the conductivity of electrolytes. Under optimal value of process parameters, high decolourization (99.6%) was obtained at 25 min. The experimental data showed that pseudo-second order kinetics with a correlation coefficient (R2 = 0.97) and Sips isotherm with a correlation coefficient (R2 = 0.98) were found to be well fitted for kinetic and adsorption equilibrium models, respectively. The economic efficiency was also calculated on the basis of electrical energy consumption (EEC), specific electrical energy consumption (SEEC), and current efficiency, respectively. Moreover, characterization of EC generated sludge was also carried out by proximate analysis, IR spectra and XRD analysis. The results revealed that EC process using Fe electrode is quite efficient and clean process for decolourization of reactive dye from aqueous solution.


Sign in / Sign up

Export Citation Format

Share Document