scholarly journals Comparative Effect of Fungicides against Blast Disease of Rice

Author(s):  
Fatema- Tuz-Zohura ◽  
A. H. M. Mahfuzul Haque ◽  
Md. Asad- Ud-Doullah

Keeping in view the importance of rice blast disease, an experiment was conducted in the Laboratory of the department of Plant Pathology & Seed Science, Sylhet Agricultural University,    and at the field of regional BADC Seed Production farm, Khadimnagar, Sylhet, Bangladesh, to evaluate see health status of the collected samples and effectiveness of fungicides against the blast disease of rice. Treatments viz T1: Edifen 50 EC (Edifenphos), T2: Karisma 28 SC (Azoxystrobin 20% + Cyproconazole 8%), T3:  Nativo 75 WP (Tebuconazole 50% +Trifloxystrobin 25%), T4: Trooper 75WP (Tricyclazole), T5: Stanza 75WP (Imidazole), T6: Amister top (Azoxystobin 20% + Difenoconazole 12.5%), T7: Control (water) were used both in laboratory and field condition. In laboratory, different seed borne fungi, like Aspergillus, Fusarium, Curvularia, Penicillium, Pyricularia, Bipolaris, Alternaria, were detected from the collected seed sample by blotter method.  In the field, treatments were applied as foliar sprays for three times with ten days interval. The lowest blast disease incidence (34.0%), lowest severity (31.6%) was found in T2: Karisma 28 SC treated plots, and gave best result in term of yield (6.3 ton/ha) in comparison to other treatments. The results of the present studies suggested that use of Karisma 28 SC is the best choice against rice blast with lowest disease incidence and highest yield.

Author(s):  
KD Puri ◽  
SM Shrestha ◽  
KD Joshi ◽  
GB KC

The severity of the rice blast disease (Pyricularia grisea) of both leaf and neck varies with different environment and it becomes destructive under favorable condition. The leaf and neck blast resistance and susceptible interaction of 30 different tropical rice lines were evaluated under low-, mid- and up-land conditions of Chitwan district and classified on the basis of disease severity with respect to susceptible check, Masuli. Of them, 5, 10, 12 and 3 rice lines were resistant to leaf blast, moderately resistant, moderately susceptible susceptible, respectively. Similarly, for the neck blast nine lines were resistant, thirteen moderately resistant, seven moderately susceptible and one was susceptible. The progenies from Masuli/MT4 had the highest leaf and neck blast susceptible reaction, while the most of progenies from IPB (Irradiated Pusa Basmati), KalinghaIII_IR64, Radha 32_ KIII and Masuli_IR64 were resistant, and the most promising sources against leaf and neck blast resistance. Therefore, the progenies from these parents can be used in breeding the resistant variety. Key words: Pyricularia grisea, resistance, rice lines J. Inst. Agric. Anim. Sci. 27:37-44 (2006)


Author(s):  
Saleh Ahmed Shahriar ◽  
Abdullah All Imtiaz ◽  
Md. Belal Hossain ◽  
Asmaul Husna ◽  
Most. Nurjahan Khatun Eaty

Rice blast caused by Magnaporthe grisea is the major damaging disease in nearly all rice growing nations. Economically relevance with 60 percent of total population of world depending on rice as the main source of calories, may have destructive effects of the disease, however, this pathogen has developed into a pioneering model system for researching host-pathogen interactions. The disease outbreak depends on the weather and climatic conditions of the various regions. The disease's occurrence and symptoms vary from country to country. Susceptible cultivars cause huge rice production loss in yield. The principal cause of resistance breakdown in rice against rice blast disease is pathogenic variability. During sexual hybridization, pathogenic changes may provide evidence of pathogenic variation found at the asexual stage of the fungus. The virulent pathotypes cause severe disease incidence. Only through pathogenicity research the pathotypes can be determined using a collection of different rice varieties that are usually different carrying various resistance genes. Rice breeders now have a number of resistant genes however, most of the breeding programs emphasized upon monogenic resistance. Genetic heterogeneity of M. grisea should be taken into account when screening blast resistant rice genotypes through morphological analysis, pathogenicity and molecular characterization. Knowledge on the virulence of the rice blast and host resistant is essential for managing the disease. Cultivation of resistant varieties with chemical control is highly effective against blast pathogens.


Author(s):  
G. O. Agbowuro ◽  
M. S. Afolabi ◽  
E. F. Olamiriki ◽  
S. O. Awoyemi

Rice blast disease is one of the major constraints to rice production, threatening food security globally. Rice grain production losses due to the disease leads economic losses to the farmers, and to an increase in global rice price as a result of the supply that is far below the consumer demand. The losses from the disease annually was estimated to feed over 60 million individual. The disease has been studied comprehensively by researchers due to the importance attached to rice and its vast spread and destructiveness across the globe. A good understanding of the pathogen causing the disease, its life cycle and development, epidemiology, symptoms, management strategy will offer a good insight into the disease incidence and give an appropriate and effective decision-making in its management. Different control measures have been adopted managing the disease, including the use of resistant varieties. Integrated disease management strategies coupled with good agronomy practices are required for successful control of rice blast for food security. This review, therefore, examined the fundamentals of rice blast disease (Magnaporthe oryzae) and offered strategies to minimize the disease activities to ensure proper production and increase the supply of rice grains.


2021 ◽  
Vol 7 (12) ◽  
pp. 1060
Author(s):  
Fayaz Ahmad Mohiddin ◽  
Nazir A. Bhat ◽  
Shabir H. Wani ◽  
Arif H. Bhat ◽  
Mohammad Ashraf Ahanger ◽  
...  

Rice blast is considered one of the most important fungal diseases of rice. Although diseases can be managed by using resistant cultivars, the blast pathogen has successfully overcome the single gene resistance in a short period and rendered several varieties susceptible to blast which were otherwise intended to be resistant. As such, chemical control is still the most efficient method of disease control for reducing the losses caused due to diseases. Field experiments were conducted over two successive years, 2018 and 2019, in temperate rice growing areas in northern India. All the fungicides effectively reduced leaf blast incidence and intensity, and neck blast incidence under field conditions. Tricyclazole proved most effective against rice blast and recorded a leaf blast incidence of only 8.41%. Among the combinations of fungicides, azoxystrobin + difenoconazole and azoxystrobin + tebuconazole were highly effective, recording a leaf blast incidence of 9.19 and 10.40%, respectively. The chemical combination mancozeb + carbendazim proved less effective in controlling the blast and it recorded a disease incidence of 27.61%. A similar trend was followed in neck blast incidence with tricyclazole, azoxystrobin + difenoconazole, and azoxystrobin + tebuconazole showing the highest levels of blast reductions. It is evident from the current study that the tested fungicide combinations can be used as alternatives to tricyclazole which is facing the challenges of fungicide resistance development and other environmental concerns and has been banned from use in India and other countries. The manuscript may provide a guideline of fungicide application to farmers cultivating susceptible varieties of rice.


2021 ◽  
Vol 9 (7) ◽  
pp. 1441
Author(s):  
Van Bach Lam ◽  
Thibault Meyer ◽  
Anthony Arguelles Arias ◽  
Marc Ongena ◽  
Feyisara Eyiwumi Oni ◽  
...  

Rice monoculture in acid sulfate soils (ASSs) is affected by a wide range of abiotic and biotic constraints, including rice blast caused by Pyricularia oryzae. To progress towards a more sustainable agriculture, our research aimed to screen the biocontrol potential of indigenous Bacillus spp. against blast disease by triggering induced systemic resistance (ISR) via root application and direct antagonism. Strains belonging to the B. altitudinis and B. velezensis group could protect rice against blast disease by ISR. UPLC–MS and marker gene replacement methods were used to detect cyclic lipopeptide (CLiP) production and construct CLiPs deficient mutants of B. velezensis, respectively. Here we show that the CLiPs fengycin and iturin are both needed to elicit ISR against rice blast in potting soil and ASS conditions. The CLiPs surfactin, iturin and fengycin completely suppressed P. oryzae spore germination resulting in disease severity reduction when co-applied on rice leaves. In vitro microscopic assays revealed that iturin and fengycin inhibited the mycelial growth of the fungus P. oryzae, while surfactin had no effect. The capacity of indigenous Bacillus spp. to reduce rice blast by direct and indirect antagonism in ASS conditions provides an opportunity to explore their usage for rice blast control in the field.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yunchen Zhao ◽  
Wenjiang Fu ◽  
Changwei Hu ◽  
Guangquan Chen ◽  
Zhanwen Xiao ◽  
...  

AbstractSoil microbe is crucial to a healthy soil, therefore its diversities and abundances under different conditions are still need fully understand.The aims of the study were to characterize the community structure and diversity of microbe in the rhizosphere soil after continuous maize seed production, and the relationship between the disease incidence of four diseases and the variation of the rhizosphere microbe. The results showed that different fungal and bacterial species were predominant in different cropping year, and long-term maize seed production had a huge impact on structure and diversity of soil microbial. Ascomycota and Mortierellomycota were the dominant fungal phyla and Mortierella and Ascomycetes represented for a large proportion of genus. A relative increase of Fusarium and Gibberella and a relative decrease of Mortierella, Chrysosporium, Podospora, and Chaetomium were observed with the increase of cropping year. Pathogenic Fusarium, Curvularia, Curvularia-lunata, Cladosporium, Gibberella-baccata, and Plectosphaerellaceae were over-presented and varied at different continuous cropping year, led to different maize disease incidence. Proteobacteria and Actinobacteria ranked in the top two of all bacterial phyla, and genus Pseudarthrobacter, Roseiflexus and RB41 dominated top 3. Haliangium and Streptomyces decreased with the continuous cropping year and mono-cropping of maize seed production increased disease incidence with the increase of cropping year, while the major disease was different. Continuous cropping of maize seed production induced the decrease of protective microbe and biocontrol genera, while pathogenic pathogen increased, and maize are in danger of pathogen invasion. Field management show great effects on soil microbial community.


Rice ◽  
2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Lan-Lan Wang ◽  
Jing-Jing Jin ◽  
Li-Hua Li ◽  
Shao-Hong Qu

Abstract Background Long non-coding RNAs (LncRNAs) have emerged as important regulators in many physiological processes in plant. By high-throughput RNA-sequencing, many pathogen-associated LncRNAs were mapped in various plants, and some of them were proved to be involved in plant defense responses. The rice blast disease caused by Magnaporthe oryzae (M. oryzae) is one of the most destructive diseases in rice. However, M. oryzae-induced LncRNAs in rice is yet to be studied. Findings We investigated rice LncRNAs that were associated with the rice blast fungus. Totally 83 LncRNAs were up-regulated after blast fungus infection and 78 were down-regulated. Of them, the natural antisense transcripts (NATs) were the most abundant. The expression of some LncRNAs has similar pattern with their host genes or neighboring genes, suggesting a cis function of them in regulating gene transcription level. The deferentially expressed (DE) LncRNAs and genes co-expression analysis revealed some LncRNAs were associated with genes known to be involved in pathogen resistance, and these genes were enriched in terpenoid biosynthesis and defense response by Gene Ontology (GO) enrichment analysis. Interestingly, one of up-regulated DE-intronic RNA was derived from a jasmonate (JA) biosynthetic gene, lipoxygenase RLL (LOX-RLL). Levels of JAs were significantly increased after blast fungus infection. Given that JA is known to regulate blast resistance in rice, we suggested that LncRNA may be involved in JA-mediated rice resistance to blast fungus. Conclusions This study identified blast fungus-responsive LncRNAs in rice, which provides another layer of candidates that regulate rice and blast fungus interactions.


Sign in / Sign up

Export Citation Format

Share Document