scholarly journals Persea americana Leaf Ethyl Acetate Extract Phytochemical, In-vitro Antioxidant and In-vivo Potentials to Mitigate Oxidative Stress in Alloxan-induced Hyperglycaemic Rats

2019 ◽  
pp. 1-11
Author(s):  
J. A. Mashi ◽  
A. M. Sa’id ◽  
R. I. Idris ◽  
I. Aminu ◽  
A. A. Muhammad ◽  
...  

The purpose of this study was to investigate the in-vivo and in-vitro potentials of ethyl acetate extract of P. americana leaf in alloxan-induced diabetic rats. Quantitative phytochemicals analyzed includes; flavonoids, saponins, tannins, alkaloids and phenolics. Measurement of antioxidant activity using 1,1-Diphenyl-2-picrylhydrazyl, total antioxidant capacity, hydroxyl radical, hydrogen peroxide, superoxide radical and ferric reducing activity of the extract was carried out. Hyperglycemia was induced by intraperitoneal injection of alloxan monohydrate to albino rats. In-vivo anti-oxidant potentials of the extract were evaluated by measuring liver homogenate activity of superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase and malondyaldehyde in alloxan-induced diabetic rats administered with the extract.  A total of 30 Albino rats were used for this experiment and they were divided into six groups of 5 rats each. Group A; normal control, Group B; diabetic control, Groups C-E; experimental groups administered with different doses (100, 200 and 400 mg/kg body weight respectively); of the extract and Group F; glucophage (84 mg/kg body weight, standard drug) for 4 weeks. This study was conducted in the Department of Biochemistry, Bayero University, Kano, in August, 2018. Data was analyzed using one-way ANOVA with P=.05 value considered as significant. Results of the quantitative phytochemical investigation shows that the extract is rich in phenolics (184.1±0.6), flavonoids (115.8±2.1), alkaloids (41.5±1.8), with least concentration of tannis (21.2±0.8) and saponins (15.2±2.3). The extract exhibited high radical scavenging activity against synthetic free radicals (DPPH), reactive oxygen species (peroxide, superoxide and hydroxyl acid) and high ability to reduce Fe3+ to Fe2+ (FRAP). The activities of antioxidant enzymes of the treated rats were increased significantly (P=.05) while the level malondyaldehyde was significantly decreased (P=.05) in the treated groups. Ethyl acetate leaf extract of Persea americana contains phytochemical substances which improved antioxidant status and can be use as herbal therapy for the management of oxidative stress induced by diabetes mellitus and associated complications.

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
J. O. Adebayo ◽  
E. A. Balogun ◽  
S. O. Malomo ◽  
A. O. Soladoye ◽  
L. A. Olatunji ◽  
...  

In this study, the antimalarial and toxicity potentials of husk fibre extracts of five Nigerian varieties ofCocos nuciferawere evaluatedin vitro. The only active extract fraction, West African Tall (WAT) ethyl acetate extract fraction, was then evaluated for its phytochemical constituents, antimalarial and toxicity potentials at varying doses (31.25–500 mg/kg body weight) using various organ function indices. The results revealed that WAT ethyl acetate extract fraction (WATEAEF) contained alkaloids, tannins, and flavonoids and was active againstPlasmodium falciparumW2 strain maintained in continuous culture, with a selectivity index of 30.3. The same extract fraction was activein vivoagainstPlasmodium bergheiNK65, causing more than 50% reduction in parasitaemia on days 4 and 6 after inoculation at various doses administered. WATEAEF did not significantly alter (P>0.05) function indices of the liver and cardiovascular system at all doses administered but significantly increased (P<0.05) plasma creatinine concentration at 250 and 500 mg/Kg body weight compared to controls. The results of this study suggest that WATEAEF possesses antimalarial activity and may not adversely affect normal liver function nor predispose subjects to cardiovascular diseases but may impair normal kidney function at higher doses. Further studies are underway to isolate the active principles.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Avinash Sharma ◽  
Rajvir Kaur ◽  
Jasleen Kaur ◽  
Saweta Garg ◽  
Rajbir Bhatti ◽  
...  

AbstractThe present study aimed at isolation of endophytic basidiomycetous fungi and evaluation of their in-vitro and in-vivo antidiabetic potential. Preliminary screening for in-vitro activity was carried out using α-glucosidase inhibition assay. An endophytic isolate Sch1 (isolated from Aloe vera), identified to be Schizophyllum commune Fr. on molecular basis, exhibiting more than 90% α-glucosidase inhibitiory activity was selected for further studies. Detailed in-vivo investigations for antidiabetic potential of ethyl acetate extract of S. commune (Sch1), at two different doses, were carried out in streptozotocin induced diabetic Wistar rats. Treatment of diabetic rats with S. commune extract caused significant decrease in blood glucose level and increase in body weight after 14 days experimental period. It significantly restored renal parameters including creatinine, blood urea nitrogen, fractional excretion of sodium, and potassium level in diabetic rats. Improvement in lipid profile and level of antioxidant parameters viz. reduced glutathione, thiobarbituric acid reactive species, and superoxide anion generation was also observed after treatment. Liver enzymes (serum glutamic pyruvic transaminase, serum glutamic-oxaloacetic transaminases, and alkaline phosphatase) homeostasis was found to be markedly improved in diabetic rats administered with S. commune extract. The effects were more pronounced at higher concentration and comparable to acarbose which was used as positive control. Phytochemical analysis revealed the presence of phenolics and terpenoids in the ethyl acetate extract. This is the first report highlighting the therapeutic potential of an endophytic S. commune in the management of diabetes.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Ameur Ben Younes ◽  
Maryem Ben Salem ◽  
Hanen El Abed ◽  
Raoudha Jarraya

Background. This study investigates the biological activities ofAnthyllis henonianaflowers extracts.Materials and Methods. Antioxidant activity and thein vitroinhibitory effect of key digesting enzymes related to postprandial hyperglycemia were determined. Diabetic rats were orally and daily given the best extract from flowers ofAnthyllis henonianaat a dose of acarbose for one month.Results. Among the extracts, the ethyl acetate one displayed remarkable antioxidant activity including DPPH (IC50= 2.34 mg/mL) and was more effective in inhibitingα-glucosidase (IC50= 17μg/mL) thanα-amylase (IC50= 920μg /mL) activities.In vivo, the results proved that ethyl acetate extract at doses of 400 mg/kg bw decreased significantly the blood glucose level and lipid profile levels and increased the activities of antioxidant enzymes. These protective impacts ofAnthyllis henonianaethyl acetate flowers extract were confirmed by histological results.Conclusion. This study demonstrates, for the first time, thatAnthyllis henonianaflowers ethyl acetate extract is effective in inhibiting hyperglycemia and oxidative stress caused by diabetes.


Author(s):  
Mohammed Aliyu Sulaiman ◽  
Daniel Dahiru ◽  
Mohammed Auwal Ibrahim ◽  
Ahmed Ibrahim Hayatu

Background: Oxidative stress is involved in the pathogenesis of hypertension, myocardial ischemia-reperfusion injury, atherosclerosis, muscular dystrophy, aging and other associated diseases. Vitex doniana is used in Adamawa, northern Nigeria to treat oxidative stress associated diseases. However, the antioxidative effects of the plant have not been scientifically examined in oxidative stress experimental animal models. The aim of this study is to investigate the in vitro and in vivo antioxidant activities of aqueous and ethanol stem bark extracts of Vitex doniana in oxidative stress model of rats. Methods: The study used 35 adult albino rats weighing 175 ± 25 g, of which 30 were induced with oxidative stress by intraperitoneal injection of doxorubicin (10 mg/kg) for three consecutive days. Animals were treated by oral administration of silymarin (100 mg/kg) and Vitex doniana aqueous or ethanol extract (100 mg/kg and 200 mg/kg) for 14 consecutive days before they were sacrificed on the 15th day and blood was analyzed for biochemical indices of oxidative stress. Results: The results of the phytochemistry showed the presence of alkaloids, tannins, flavonoids, steroids, phenols, saponins, terpenoids, glycosides: and total flavonoids (52.70 ± 1.60 mg/ml and 75.40 ± 0.80 mg/ml), total phenols (21.45 ± 1.54 mg/ml and 26.50 ± 1.22 mg/ml) for aqueous and ethanol stem bark extracts respectively. The extracts scavenged DPPH radical, reduced Fe3+ and inhibited lipid peroxidation. Doxorubicin significantly (p<0.05) lowered the levels of SOD, CAT, GR and TAS and significantly (p<0.05) but, increased the level of LPO. Oral treatment with Vitex doniana extracts significantly (p<0.05) increased the activities of CAT, GR, SOD and TAS while LPO was significantly (p<0.05) lowered. Vitex doniana stem bark extracts significantly (p<0.05) improved the biochemical derangements observed in the induced untreated animals in comparable manner to that of Silymarin. Conclusion: The present study provides the scientific rationale for the use of Vitex doniana stem bark in traditional medicine and has a viable antioxidative capacity both in vitro and in vivo.


Author(s):  
KAMNI RAJPUT ◽  
RAMESH CHANDRA DUBEY

Objective: In vitro antioxidant activity, in vivo antidiabetic property and intestinal attachment by two potential probiotic bacterial strains, namely, Enterococcus faecium and Enterococcus hirae were studied using albino rats. Methods: Antioxidant the activity was assessed using 2,2-Diphenyl-1-picrylhydrazyl radicals scavenging assay. Alloxan was administered intraperitoneally to induce diabetic conditions in experimental rats. Animals were treated with oral administration of Enterococcus spp., such as E. faecium, and E. hirae isolated from goat and sheep milk. The control animal group received normal saline for the same days. Glibenclamide drug was used as a positive control against probiotic bacterial cells. Results: However, administration of probiotic bacterial strains E. faecium and E. hirae, in albino rats significantly (p<0.05) at varying doses lowered blood glucose levels in diabetic rats as compared to the diabetic control group. Both the species of Enterococcus increased the bodyweight of experimental rats. However, E. faecium was the best antidiabetic strain having the antioxidant activities also in comparison to E. hirae. The attachment of probiotic bacterial cells E. faecium on the rat’s intestine wall against pathogens was examined. Furthermore, E. faecium showed its aggregation with pathogens by attachment of the intestines of albino rats. This showed that both the bacterial strains exhibited in vivo antidiabetic effect. Conclusion: The results of this study showed that probiotic bacteria possess antioxidant, antidiabetic activities, and attachment of intestine.


2021 ◽  
Vol 16 (10) ◽  
pp. 1934578X2110559
Author(s):  
Le Minh Ha ◽  
Ngo Thi Phuong ◽  
Nguyen Thi Thu Hien ◽  
Pham Thi Tam ◽  
Do Thi Thao ◽  
...  

In this study, we aimed at evaluating in vitro and in vivo anti-inflammatory activity of various extracts of the rhizomes of Globba pendula Roxb. Three extracts ( n-hexane, ethyl acetate, and water) were screened for their inhibitory effect on NO production by lipopolysaccharide-stimulated RAW 264.7 macrophages. The ethyl acetate extract of G. pendula rhizomes (EGP) showed a potential effect with an IC50 value of 32.45 µg/mL. For in vivo study, the ethyl acetate extract was further investigated for its anti-inflammatory effect using collagen antibody-induced arthritic mice (CAIA). The level of arthritis in experimental mice significantly reduced ( P < .05) after treatment with EGP at a dose of 500 mg/kg body weight (b.w.). This study also revealed that EGP is orally non-toxic. Ethyl p-methoxy cinamate was identified as the main constituent of EGP, which may result in its anti-inflammatory effect.


2017 ◽  
Vol 54 (3) ◽  
pp. 336
Author(s):  
Kavitha K. ◽  
Ponne S.

The present study was designed to assess the in vitro and in vivo anti-diabetic efficacy of <em>O. sanctum</em> seed and its phytochemical screening. In vitro inhibitory effect on carbohydrate digestive enzymes like α-amylase and α-glucosidase and in vivo parameters such as fasting blood glucose and body weight changes were studied, a potent inhibitory effect was observed on activities of digestive enzymes and a marked decrease in the glucose level in the <em>O. sanctum</em> seed extract treated streptozotocin induced diabetic rats was noted. Further a marked reduction in body weight was also observed.


Author(s):  
Kamalika Mazumder ◽  
Himangshu S Maji ◽  
Nripendra N Bala

Objective: Ficus benghalensis Linn. (Moraceae family) is commonly known as banyan tree in English, which is used traditionally in India. The literature survey showed that the aerial roots of this plant are yet to be explored. Our main interest is to evaluate its pharmacognostic and phytochemical character by the standard monograph and to explore its in vitro antioxidant and in vivo analgesic activity study with ethyl acetate extract.Methods: Pharmacognostic evaluation and phytochemical screening have been done using standard monograph. An in vitro antioxidant activity using ethyl acetate extract has been done using four different methods. In vivo analgesic activity of the ethyl acetate extract has been evaluated by acetic acid-induced writhing test in mice and tail flick method.Results: Aerial roots of F. benghalensis have been found the rich source of steroidal glycosides, cardiac glycosides, flavonoids, tri-terpenoids, and phenols. The presence of phellem, phellogen, xylem, and phloem has been found after microscopic investigation. All the pharmacognostic parameters proved its purity. Results showed the absence of heavy metals. The ethyl acetate extract has shown potent antioxidant activity at 100 μg/ml concentration and higher analgesic activity at the concentration of 400 mg/kg than 200 mg/kg.Conclusion: Pharmacognostic characteristics and phytochemical properties revealed in this study could be used for the pharmacopoeial standard. Ethyl acetate extract showed potent antioxidant and analgesic activity.


2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Noumedem Anangmo Christelle Nadia ◽  
Yamssi Cédric ◽  
Simeni Njonnou Sylvain Raoul ◽  
Ngongang Ouankou Christian ◽  
Mounvera Abdel Azizi ◽  
...  

Background. Malaria is one of the most critical diseases causing about 219 million cases worldwide in developing countries. The spread and development of resistance against chemical antimalarial drugs is one of the major problems associated with malaria control. The present study was to investigate the antimalarial efficacy of ethyl acetate extract and one fraction of Bidens pilosa in vivo in order to support the usage of this plant by traditional healers to treat malaria. Methods. The extracts were prepared by maceration of B. pilosa leaf powder in ethyl acetate. The liquid filtrate of the extract and the best in vitro antiplasmodial fraction using HPLC were concentrated and evaporated using a rotavapor under vacuum to dryness. The antimalarial activity of B. pilosa plant products were evaluated in vivo against Plasmodium berghei infected mice according to the Peter and Rane test. The antimalarial efficacy of the a selected crude extract (ethyl acetate extract) was evaluated at 125, 250, and 500 mg/kg, while a selected fraction from ethyl acetate extract (fraction 12) was evaluated at 62.5 and 125 mg/kg. Blood from experimental animals was collected to assess hematological parameters. Results. The crude extract of ethyl acetate and fraction 12 demonstrated 100% in vivo parasite suppressive activity at doses of 500 mg/kg and 125 mg/kg, respectively, for the crude extract and fraction 12. The mice treated with 250 and 500 mg/kg had their parasitemia (intraerythrocytic phase of P. Berghei) drop considerably, disappearing by the 8th day in mice receiving 500 mg/kg. The ethyl acetate extract of B. pilosa, fraction 12 showed an even higher antiplasmodial activity. By the 5th day of the experiment, the treatment led to a modification of hematological parameters in mice. The chloroquine (5 mg/kg), fraction 12 (125 mg/kg), and the crude extract (500 mg/kg) groups all survived the 30 days of the experiment, while the negative control group registered 100% of the deaths. Conclusion. This study scientifically supports the use of Bidens pilosa leaves in the traditional treatment of malaria. However, the mode of action and in vivo toxicity of the plant still need to be assessed.


1981 ◽  
Vol 240 (3) ◽  
pp. G225-G231
Author(s):  
R. P. Cornell

In contrast to previous studies of neutrophils from diabetic animals and humans in vitro and of macrophages from diabetic humans in vivo, which reported phagocytic depression, reticuloendothelial system (RES) hyperphagocytosis of colloidal carbon was observed in rats at 14 and 28 days after diabetes induction with streptozotocin (STZ). Carbon clearance half times were significantly enhanced to 6.3 +/- 0.79 and 8.1 +/- 1.04 min at 14 and 28 days post-STZ, respectively, compared with the nondiabetic value (12.7 +/- 0.98 min). The severity of uncontrolled STZ-induced diabetes in rats was confirmed by significant hypoinsulinemia, hyperglucagonemia, hyperglycemia, and hyperlipidemia. Although body weights of STZ-diabetic animals declined progressively, liver weights as a percent of body weight increased above the control value at 14 and 28 days post-STZ. In fact, expression of carbon phagocytosis as the corrected phagocytic index, which accounts for changes in liver and spleen weights relative to body weight, eliminated the significant difference between STZ-diabetic and nondiabetic animals. Antibiotic treatment of diabetic rats failed to alter the hyperphagocytosis, implying that a chronic bacterial infection was not the cause of phagocytic stimulation. Daily insulin replacements, but not a single large insulin dose to 14-day post-STZ rats, reversed the enhanced phagocytosis of colloidal carbon.


Sign in / Sign up

Export Citation Format

Share Document