scholarly journals Long Term Manuring and Fertilization Effect on Soil Properties in Terrace Soil

Author(s):  
Firoz Ahmed ◽  
Majharul Islam ◽  
Md. Mahfujur Rahman ◽  
Md. Saikat Hossain Bhuiyan ◽  
M. A. Kader

The study was carried out the influence of long term manuring and fertilization on soil properties. Soil samples were collected in 2016 from a highly weathered terrace soil with rice-wheat cropping pattern at Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU) experimental farm having five OM (control, cow dung, green manure, rice straw and compost) treatments combined with three mineral N fertilizer (control, 155 kg ha-1, 220 kg ha-1) levels. Long term (28 years) application of mineral fertilizers and manure resulted in significant differences in soil organic carbon, total N content, C:N ratio of soil and soil pHKCl between the treatments. The  soil organic carbon content varied among the different treatments from 6.11 g OC kg-1 (application of rice straw and no N) to 9.43 g OC kg-1 (application of compost and 220 kg N ha-1 yr-1). The total soil N content varied among the different treatments from 0.41 g N kg-1 (application of rice straw and no N) to 0.73 g N kg-1 (application of compost and 220 kg N ha-1 yr-1). The C:N ratios of the soil varied among the different treatments from 13.3 (application of no exogenous OM  and no N) to 15.1(application of green manure and no N). The soil pH varied among the different treatments from 4.42 (application of cow dung and 220 kg N ha-1 yr-) to 4.89 (application of compost/cow dung and no N). So, long term fertilization and manuring undoubtedly bring some changes in the physiochemical soil properties of terrace soil.

Author(s):  
Fahamida Akter ◽  
Md. Mizanur Rahman ◽  
Md. Ashraful Alam

Organic fertilizers are enriched in plant nutrients which may enhance the soil chemical properties. However, studies on the effect of long term fertilization on soil chemical attributes is yet lacking in Bangladesh. Therefore, an experiment was conducted to assess the changes of soil chemical properties as influenced by long term manuring and nitrogen fertilizer in silt clay loam soil under rice-wheat cropping system. The experimental plot received different organic materials for the last 26 years (1988-2014). Five types of organic materials treatments such as control (no manure), cowdung, compost, green manure and rice straw were applied at the rate of 0, 25, 25, 7.5 and 1.5 t ha-1, respectively in a yearly sequence. Three levels of nitrogen viz. 0, 75 and 100 kg ha-1 for rice and 0, 80 and 120 kg ha-1 for wheat were applied in this study. Long term application of different organic materials positively increased soil organic carbon and total N, P, S and decreased pH and K, Ca and Mg availability. Increase in soil organic carbon was found maximum under green manure and lowest in rice straw applied soil. The green manure contributed to the maximum accumulation of soil nitrogen. N dose of 80 kg ha-1 was found effective in increasing availability of soil nutrients.


2019 ◽  
Vol 7 (2) ◽  
pp. 139
Author(s):  
Md. Majharul Islam ◽  
Md. Forhad Hossain ◽  
Md Mukul Mia ◽  
Md. Shaidul Islam ◽  
Md. Saikat Hossain Bhuiyan ◽  
...  

Soil organic matter is the most often reported indicator of soil quality and productivity and an evidence of previous soil management. Therefore, in 2017, a laboratory incubation study was carried out in the experimental filed of Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh, Bangladesh under control condition at 25°C for 104 days to investigate the influence of long term manuring and fertilization on soil respiration by means of C mineralization. Soil samples were collected from floodplain soil with rice-rice cropping pattern at Bangladesh Agricultural University (BAU) experimental farm having eight treatments. Long term (33 years) application of fertilizers and manure resulted in significant differences in soil organic carbon, total N content, and soil pH KCl between the treatments. The soil organic carbon and total N content varied among the different treatments from14.9 g OC kg-1 to 17.0 g OC kg-1 and1.60 g N kg-1 (control) to 1.78 g N kg-1 (application of NPK). The soil pH varied among the different treatments from 5.65(application of NK) to 4.89 (application of N). This result indicates that more stable organic carbon was formed in NPK treated soil which is less prone to decomposition if present crop management has been changed.    


Author(s):  
Firoz Ahmed ◽  
Majharul Islam ◽  
Md. Mahfujur Rahman ◽  
Sushan Chowhan ◽  
Md. Saikat Hossain Bhuiyan ◽  
...  

Background: A laboratory incubation study was carried out to study the influence of long term manuring and fertilization on soil organic matter (SOM) quality by means of C mineralization in terrace soil of Bangladesh.Methods: Soil samples were collected in 2016 from a highly weathered terrace soil with rice-wheat cropping pattern at Bangabandhu Sheikh Mujibur Rahman Agricultural University experimental farm having five OM (control, cow dung, green manure, rice straw and compost) treatments combined with three mineral N fertilizer (control, 155 kg ha-1, 220 kg ha-1) levels. A model was used to explain detected C mineralization in soil known as parallel-first and zero order kinetic model.Result: Long term (28 years) application of mineral fertilizers and manure resulted that all the estimated parameters were not significantly influenced by either manure application or N fertilization except C mineralization rate was constant for resistant carbon pool (ks). The ks value was significantly influenced by manure application. Cumulative annual C mineralization evolved from SOM under field conditions were estimated between 6.21 to 9.31% of total soil organic carbon. The annual carbon mineralization was found to be significantly influenced by different exogenous organic matter application but not with N fertilization. There was a significant difference in annual C mineralization between green manure, cow dung and compost. However, the annual C mineralization was statistically similar between control and green manure treated soil. This result indicates that more stable organic matter was formed in compost treated soil which is less prone to decomposition if present crop management has been changed.


2013 ◽  
Vol 1 (3) ◽  
pp. 29-36 ◽  
Author(s):  
Tomohide Sugino ◽  
Wanida Nobuntou ◽  
Nuttapong Srisombut ◽  
Praison Rujikun ◽  
Suphakarn Luanmanee ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 519
Author(s):  
Marcin Studnicki ◽  
Janna Macholdt ◽  
Andy Macdonald ◽  
Wojciech Stępień

The anticipated increases in environmental variability associated with climate change may lead to enhanced abiotic plant stresses (e.g., heat stress, drought stress, etc.) resulting in greater inter-annual yield fluctuations and higher crop production risk. While there has been increasing attention to adaptation measures, there is little evidence available on how to change agronomic management strategies to maintain stable yields in winter rye production systems in Poland. This study uses rye yields from the unique Skierniewice Long-term experiment (Poland) to examine for the first-time the long-term effects of different nutrient regimes on crop yield stability from 1966 to 2015. Yields from six combinations of mineral fertilizers and lime (CaNPK, NPK, CaPK, CaNK, CaNP, Ca), with and without additional manure, were used to estimate the temporal yield variability of winter rye. A novel statistical approach based on a mixed model approach with REML (restricted maximum likelihood) stability parameter estimation was used. The results showed that the use of additional manure in ‘sub-optimal’ mineral fertilizer treatments, such as Ca and CaPK (without mineral N), reduced the temporal yield variability of rye. In contrast, additional organic input led to more variable rye yields in already ‘optimal’ treatments including mineral N (CaNPK and NPK), compared to those with no additional manure. Winter rye given CaNPK and NPK, without additional organic manure demonstrated high yield and low temporal yield variability. In contrast, yields of treatments with no mineral N (Ca and CaPK) and no additional manure supply were low and unstable. In addition, it was found that increasing soil organic carbon resulted in larger, more stable yields. These findings highlight the importance of ensuring rye crops receive sufficient fertilizer to maintain crop production levels and yield stability, especially in dry years. They also demonstrate the importance of avoiding the excessive use of organic manures when fertilizer inputs are sufficient to meet crop demand. Overall, the study provides novel insights about how to maintain grain yields and minimize temporal yield variation of rye in arable cropping systems, which will become increasingly important in a changing climate in Poland and in other temperate climate areas. This study also highlights the importance of soil organic carbon for improving the climate resilience of winter rye, while simultaneously meeting the demand for more sustainable management of the soil.


2017 ◽  
Vol 9 (3) ◽  
pp. 1801-1807 ◽  
Author(s):  
Richa Kumari ◽  
Sunil Kumar ◽  
Rajkishore Kumar ◽  
Anupam Das ◽  
Ragini Kumari ◽  
...  

Long-term effect of nitrogen substitution (25 to 50%) through different organics, viz., FYM (farm yard ma-nure), GM (green manure) and WS (wheat straw) on crop yield, nutrition and physico-chemical properties of soil was studied under rice-wheat system. The data of long term experiment revealed that maximum grain yield of 46.83 qha-1 in wheat was obtained when 100% RDF applied through mineral fertilizers after 50% N of RDF being substituted with FYM in rice. Grain yield of wheat declined under control and sub-optimal fertilizer inputs (50% or 75% recommended fertilizer NPK), whereas positive yield increment was observed under treatments receiving organic supplements. The analysis of soil samples showed that soil pH reduced from initial value of 7.40 to 7.22, organic carbon build-up from 0.46% to 0.76%, available N from 194.00 to 225.95 kgha-1 available P2O5 from 23.60 to 49.54 kgha-1 and available K2O from 155.00 to 189.95 kgha-1 However, available Sulphur and DTPA-Zn increased from 7.74 to 14.41 kg ha-1 and 0.75 to 1.37 mg kg-1 respectively due to long-term (29 years) integrated nutrient management practices under rice-wheat system in alluvial soil. In conclusion, substitution of 50% and 25% N of RDF to rice through organics either FYM / Green manure / Wheat straw significantly increased the crop yield and nutrient uptake of wheat as well as build up the organic carbon, available N, P2O5, K2O, Sulphur, DTPA extractable Zn, Cu, Fe and Mn of post harvest soil after 29 years of the experiment.


Land ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 455
Author(s):  
Rebecca M. Swab ◽  
Nicola Lorenz ◽  
Nathan R. Lee ◽  
Steven W. Culman ◽  
Richard P. Dick

After strip mining, soils typically suffer from compaction, low nutrient availability, loss of soil organic carbon, and a compromised soil microbial community. Prairie restorations can improve ecosystem services on former agricultural lands, but prairie restorations on mine lands are relatively under-studied. This study investigated the impact of prairie restoration on mine lands, focusing on the plant community and soil properties. In southeast Ohio, 305 ha within a ~2000 ha area of former mine land was converted to native prairie through herbicide and planting between 1999–2016. Soil and vegetation sampling occurred from 2016–2018. Plant community composition shifted with prairie age, with highest native cover in the oldest prairie areas. Prairie plants were more abundant in older prairies. The oldest prairies had significantly more soil fungal biomass and higher soil microbial biomass. However, many soil properties (e.g., soil nutrients, β-glucosoidase activity, and soil organic carbon), as well as plant species diversity and richness trended higher in prairies, but were not significantly different from baseline cool-season grasslands. Overall, restoration with prairie plant communities slowly shifted soil properties, but mining disturbance was still the most significant driver in controlling soil properties. Prairie restoration on reclaimed mine land was effective in establishing a native plant community, with the associated ecosystem benefits.


Sign in / Sign up

Export Citation Format

Share Document