scholarly journals Effect of Abscisic Acid on Soluble Sugar Contents in Tomato Fruits under Condition of Short-Term Night Sub-Low Temperature1

2014 ◽  
Vol 4 (7) ◽  
pp. 794-800
Author(s):  
Nan Wang
2011 ◽  
Vol 141 (3) ◽  
pp. 215-226 ◽  
Author(s):  
Adriana Bastías ◽  
María López-Climent ◽  
Mercedes Valcárcel ◽  
Salvador Rosello ◽  
Aurelio Gómez-Cadenas ◽  
...  

2021 ◽  
Vol 276 ◽  
pp. 109785
Author(s):  
Yao Tang ◽  
Jing Ren ◽  
Chunxin Liu ◽  
Jingbin Jiang ◽  
Huanhuan Yang ◽  
...  

Author(s):  
Jingwei Wang ◽  
Yuan Li ◽  
Wenquan Niu

To determine the soil mechanism in root-zone caused by water saving and the production response to alternate drip irrigation (ADI), the present study investigated the effects of deficit ADI on tomato growth using the conventional surface drip irrigation (CDI) as a control. The interactions among the experimental treatments on root index, photosynthetic efficiency, biomass accumulation, yield, fruit quality and irrigation water use efficiency (IWUE) were assessed and the inner mechanism of root-soil effecting on tomato growth, photosynthate distribution, yield and quality was discussed. ADI significantly enhanced root-soil interaction, promoted soil nitrogen and phosphorus absorption by tomato and tomato growth. However, different soil moisture deficits significantly affected tomato photosynthate accumulation and distribution, as well as fruit quality. With irrigation amount of 50% field capacity (F), ADI significantly increased soluble sugar, total soluble solid and lycopene by 38.08%, 19.48% and 30.05%, respectively, compared to those of CDI, but decreased irrigation amounts by 29.86% in comparison with the CDI one. ADI of 70% F could significantly distribute more photosynthate to fruits, thus enhanced tomato yields by 24.6% and improved IWUE by 17.05% compared to that of CDI. In addition, ADI of 70% F improved tomato fruits quality, and in particular organic acid was decreased by 43.75% and sugar-acid ratio was increased by 97% compared to CDI. However, ADI of 60% F distributed more photosynthate to plant, showing no significant difference of yields in comparison with CDI and ADI of 70% F, but a higher IWUE by 19.54% than that of CDI. ADI of 60% F significantly enhanced soluble sugar, total soluble solid, soluble protein, lycopene and sugar-acid ratio in tomato fruits by 2.06, 1.26, 1.61, 1.4 and 3.2 times respectively compared to CDI. Therefore, ADI of 60% or 70% F can be overall recommended for tomato production in a greenhouse, plant growth, fruit yield and quality, and IWUE.


2008 ◽  
Vol 55 (3) ◽  
pp. 165-167 ◽  
Author(s):  
Leonid V. Kurepin ◽  
Mirwais M. Qaderi ◽  
Thomas G. Back ◽  
David M. Reid ◽  
Richard P. Pharis

HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 517C-517
Author(s):  
Efstratia Papanikou ◽  
Paul H. Jennings

Previous research has shown that low-temperature storage can be used to maintain bedding plants in plug trays when weather conditions in spring make scheduling of transplanting difficult. The objective of this study was to determine what physiological changes occur during the short-term, low-temperature storage of plug seedlings. Plants of two bedding plant species, Geranium and Vinca, were stored at 2, 6, or 10°C and under low light or dark conditions for 4 weeks. Data were collected at three sampling dates (0, 2, or 4 weeks after beginning of storage) and included dry and fresh mass, total leaf area, leaf chlorophyll content and chlorophyll fluorescence as well as electrolyte leakage and soluble sugar content of leaf and root tissue. The parameters will be discussed in relationship to plug seedling survivability, quality, and growth responses under the experimental storage treatments.


HortScience ◽  
2011 ◽  
Vol 46 (11) ◽  
pp. 1512-1517 ◽  
Author(s):  
Manuel G. Astacio ◽  
Marc W. van Iersel

It is common for plants in the retail market to receive inadequate water and lose aesthetic value within a short period of time. The plant hormone abscisic acid (ABA) is naturally produced in response to drought conditions and reduces transpiration (E) by closing the stomata. Thus, ABA may lengthen shelf life of retail plants by reducing water loss. Two studies were conducted to look at effects of ABA on plant water use and shelf life over a 13-day period and short-term effects of ABA on leaf physiology. The objective of the short-term study was to determine how quickly 100-mL drenches of 250 mg·L−1 ABA solution affect leaf gas exchange of tomatoes (Solanum lycopersicum ‘Supersweet 100’). ABA drenches reduced stomatal conductance (gS), E, and photosynthetic rate (Pn) within 60 min. After 2 h, E, gs, and Pn were reduced by 66%, 72%, and 55% respectively, compared with the control plants. In the13-day study, ABA was applied to tomatoes as a 100-mL drench at concentrations ranging from 0 to 1000 mg·L−1 and ABA effects on water use and time to wilting were quantified. Half of the plants were not watered after ABA application, whereas the other plants were watered as needed. In general, higher ABA concentrations resulted in less water use by both well-watered and unwatered plants. ABA delayed wilting of unwatered plants by 2 to 8 days (dependent on the dose) as compared with control plants. In well-watered plants, ABA reduced daily evapotranspiration (ET) for 5 days, after which there were no further ABA effects. Negative side effects of the ABA application were rate-dependent chlorosis of the lower leaves followed by leaf abscission. These studies demonstrate that ABA drenches rapidly close stomata, limit transpirational water loss, and can extend the shelf life of retail plants by up to 8 days, which exemplifies its potential as a commercially applied plant growth regulator.


Author(s):  
Xiaoyu Li ◽  
Shuxin Li ◽  
Jinghong Wang ◽  
Jixiang Lin

Exogenous hormones play an important role in plant growth regulation and stress tolerance. However, little is known about the effect of exogenous abscisic acid (ABA) on wheat seedlings under salt and alkali stresses. Here, a pot experiment of saline and alkaline stresses (0 and 100 mmol/L) in which ABA water solution (0, 50 and 100 μmol/L) was sprayed on wheat seedlings was conducted to study the alleviative effectiveness of ABA on salt and alkali stresses. After spraying ABA (50 μmol·L−1), shoot biomass increased 19.0% and 26.7%, respectively. The Na+ content in shoots reduced from 15-fold and 61.5-fold to 10-fold and 37.3-fold in salt and alkali stresses, compared to controls. In addition, proline and organic acid synthesis in shoots also reduced significantly, but the soluble sugar content increased under alkali stress. A high concentration of ABA (100 μmol·L−1) had no significant effects on biomass and ion content in wheat seedlings under both stresses. In conclusion, foliar application of ABA with moderate concentration could effectively accelerate shoot growth of salt-induced wheat seedlings by adjusting the levels of ions and organic solutes.


1969 ◽  
Vol 173 (1033) ◽  
pp. 557-576 ◽  

The sym biotic algae (zoochlorellae) of Hydra viridis live inside the gastrodermal cells. When isolated into pure suspension free of animal tissue, zoochlorellae liberate maltose to the medium during photosynthesis. Maltose synthesis and excretion are very sensitive to external pH. At pH 4.0, about 40 to 50 % of the carbon fixed in photosynthesis may be released from the cells as maltose, and a further 4 to 6 % as other compounds (including alanine, glycollie acid, glucose, and an oligosaccharide provisionally identified as maltotriose). As the pH rises, excretion progressively diminishes, and at pH 7.0, only about 1% of the photo synthetically fixed carbon is excreted, about half as maltose. Only traces of maltose are ever found within the cells, and sucrose is always the predominant intracellular soluble sugar. When cells previously labelled with 14 C at pH 7.0 are transferred to non-radioactive media in the dark at pH 4.0, they immediately begin to synthesize and excrete [ 14 C ]maltose; the increase of [ 14 C]maltose is closely correlated with a decrease of 14 C-labelled hexose monophosphates and is not accompanied by any loss of 14 C from the insoluble fraction. This suggests that maltose is synthesized from hexose monophosphates by a process which is not directly light dependent. In short-term photosynthesis experiments at pH 4.0, fixed 14 C appears in sucrose within 20s, but none appears in maltose until 60 s. This, together with the near absence of intracellular maltose and the marked sensitivity of maltose synthesis to external pH, suggests that the mechanism of synthesis is at or near the cell surface. The experimental results were consistent with the hypothesis that maltose synthesis is UDPG -dependent, but direct proof of this was n o t obtained. Although excretion of photosynthetically fixed 14 C at pH 4.0 diminishes in the presence of external maltose, it could still continue at an appreciable rate when the external maltose concentration was as high as 10% (w/v). In 10% maltose media, some of the excreted 14 C was still in maltose, but most was in compounds provisionally identified as maltotriose and maltotetrose, suggesting that a mechanism for transglycosylation may exist on the surface of the cells. Unlike symbiotic zooxanthellae and lichen algae, Hydra zoochlorellae show no signs of losing their ability of excreting carbohydrate during the first 24 h after isolation from the symbiosis. In the case of Hydra , it is suggested that the host might be able to control maltose excretion from its zoochlorellae by variations in the intracellular pH of the gastrodermal cells, but evidence for such changes is still lacking.


Sign in / Sign up

Export Citation Format

Share Document