scholarly journals Potentials of Sugarcane Bagasse and Poultry Manure in the Remediation of Spent Motor Oil Contaminated Soil

Author(s):  
A. Y. Sangodoyin ◽  
I. O. Igbode

This study sought to investigate the potential of sugarcane bagasse, poultry manure and their combination in the remediation of spent motor oil contaminated soil. About 1.5 L of spent motor oil was sprinkled on plots measuring 0.5 m x 0.5 m dimension in 12 replicate plots to simulate a major spill. Poultry dung (PD), Sugarcane bagasse (SB) and hybrid of bagasse and Poultry dung (SB - PD) were applied as organic amendments and bulking agents. The amendments were randomly administered twice within two weeks to treatment plots except the control at rate of 24tons/ha. The soil was tilled to enhance aeration and watered twice a week for 56 days. A significant decrease in Total Petroleum Hydrocarbon, TPH of 61, 53, 46 and 23% for PD, SB - PD, SB and Control plots respectively was observed. TOC and TN decreased in all the plots except the control. Soil moisture contents between 21 and 24% while soil pH within the range of 6.9 to 7.5 enhanced biodegradation process. The Total Heterotrophic Bacterial Counts (THBC) varied in all the plots while heavy metals content remained unchanged during the study. The application of these biostimulants gave promising results on hydrocarbons removal from contaminated soil.

2018 ◽  
Vol 42 (4) ◽  
pp. 589-598 ◽  
Author(s):  
HM Naser ◽  
MZ Rahman ◽  
S Sultana ◽  
MA Quddus ◽  
MA Haoque

This study was conducted to determine the effects of organic materials to remediate contaminated soil with heavy metals. A pot study was performed by growing maize (Zea mays) in metal contaminated soil (10 kg pot-1) and soils amendments with cow manure dust, poultry manure dust, vermicompost dust, fern dust, water hyacinth dust, mustard stover dust and barnyard grass dust each at 5 g kg-1 soil. The results showed that Pb, Cd, Ni, Cr and Co uptake by maize depended on the organic materials type. Water hyacinth dust, fern dust, mustard stover dust, and barnyard grass dust addition led to decreased metal content in maize, and this decrease was better expressed with 20.5 to 33.3% for fern dust, 17.3 to 22.0 % for water hyacinth, 18.6 to 21.3% for mustard stover dust, 17.33 to 20.5% for barnyard grass dust. Cow manure dust, poultry manure dust and vermicompost dust led to increased metal content in the maize, and this increase was 6.80 to 18.7 % for cow manure, 18.9 to 86.7 % for poultry manure and 17.4 to 16.0 % for vermicompost. The different effectiveness of organic amendment on metal uptake by maize plant could be due to the nature of organic matter where water hyacinth dust, fern dust, mustard stover dust, and barnyard grass dust were mainly originated from plant. On the other hand, cow manure, poultry manure and vermicompost were mainly the excreta collected from cattle, poultry and earthworms. However, immobilization and phytoextraction techniques might be used to remediate soils which are contaminated with heavy metal.Bangladesh J. Agril. Res. 42(4): 589-598, December 2017


2020 ◽  
Vol 65 (2) ◽  
pp. 19-29
Author(s):  
Tosan Akiri-Obaroakpo ◽  
Emmanuel Imarhiagbe ◽  
Frederick Ekhaise

Oil spillage is a menace, crippling most oil-producing regions around the globe. The aim of this study was to access the role of poultry litter and cow dung in enhancing biodegradation of diesel-contaminated soil. The treatment sets were split into three levels of diesel pollution (50 mL, 100 mL and 150 mL) amended with poultry litters, cow dung and a mixture of both amendments. The microbiological properties-and the total petroleum hydrocarbon content was analyzed for a period of six months using the pour plate techniques and Gas Chromatography (GC-FID), respectively. Agarose gel electrophoresis was used for plasmid detection. Mean total heterotrophic bacterial counts ranged between 40.5±0.5 x104 cfu-1 and 102.0 ±4.0 x104 cfu-1, for C1 (soil with poultry litter and cow dung with 50mL diesel) and Control 2. The mean total hydrocarbonoclastic bacterial counts ranged from 42.0±2.0 x104 cfu-1 to 66.5±2.5 x104 cfu-1 for B1 (soil with cow dung with 50mL diesel) and C3 (soil with poultry litter and cow dung with 150mL diesel). Bacillus subtilis (25.7%) and Staphylococcus aureus (4.73%) were reported as the isolates with the highest and least percentage frequency of occurrence. The percentage of diesel oil degradation was highest in C1 (98.5%) and lowest in Control 1 (31.6%). Plasmid extraction studies carried revealed that two out of the five hydrocarbonoclastic bacteria had both plasmids and chromosomal genes. The result has indicated the enhanced capacity of mixed amendments relative to individual waste treatment used in this study and should be recommended for bioremediation application.


2017 ◽  
Vol 25 (3) ◽  
pp. 2425-2435 ◽  
Author(s):  
Zhanbiao Yang ◽  
Lixia Liu ◽  
Yanfeng Lv ◽  
Zhang Cheng ◽  
Xiaoxun Xu ◽  
...  

2021 ◽  
Vol 25 (5) ◽  
pp. 877-885
Author(s):  
A.J. Odebode ◽  
K.L. Njoku ◽  
A.A. Adesuyi ◽  
M.O. Akinola

This study was carried out to investigate the phytotoxicity of spent engine oil and palm kernel sludge on seed germination, seedling early growth and survival of sunflower (Helianthus annuus L) and its phytoremediating potential. 8.0 kg topsoil mixed with 2, 4, 6, 8 and 10% (w/v) of spent engine oil and palm kernel sludge, while the control was not mixed with spent oil and sludge (0%). The seeds were sown on these soils and monitored daily. Parameters taken were; plant height, leaf number and stem girth. The result showed that spent engine oil treated plants adversely affected growth compared to palm kernel sludge plants and control which performed better. For plant height, the mean stem girth for control at 2nd week was 0.40±0.05 mm, spent engine oil was 5.96±0.97 palm kernel oil effluent was 14.73±1.16 and at 12th week, control was 1.30±0.05 while for SEO the plant had withered and 124.6±9.02 for POE. Number of leaves at the 12th week was 26.00±2.08 in the control, 8.66±0.66, for spent engine oil at 4%, while for palm oil effluent it was 27.66±0.66, at 4%, concentration respectively. Stem girth at 2 weeks for spent engine oil was 0.19±0.05 at 2%, 0.43±0.03 for palm kernel oil effluent and at the 12th week of planting at 10% concentration was 1.63±0.08 for palm kernel oil effluent, and all plants had withered off for spent engine oil at same concentration at the 12th week. Also, spent engine oil at all concentrations delayed the germination of Helianthus annuus by 2days compared to control. Comparison analysis test showed that growth in untreated plants were significantly higher (p>0.05) than spent oil and palm kernel sludge treated plants. Similar result was observed for leaf number and stem girth which had higher mean value in palm kernel sludge and control compared to spent oil. Sunflower grown in 8% and 10% palm kernel sludge contaminated soil also flowered eight days earlier than control plants, while spent oil treated plant did not. The result shows that sunflower cannot tolerate high (4%, 6%, 8% and 10%) concentrations of spent engine oil in soil compared to palm oil effluent. Therefore, spent engine oil should be properly disposed because of its adverse effect on the growth and yield of sunflower.


2019 ◽  
Vol 9 (22) ◽  
pp. 4757 ◽  
Author(s):  
Mikel Anza ◽  
Oihane Salazar ◽  
Lur Epelde ◽  
José María Becerril ◽  
Itziar Alkorta ◽  
...  

Here, we aimed to bioremediate organically contaminated soil with Brassica napus and a bacterial consortium. The bioaugmentation consortium consisted of four endophyte strains that showed plant growth-promoting traits (three Pseudomonas and one Microbacterium) plus three strains with the capacity to degrade organic compounds (Burkholderia xenovorans LB400, Paenibacillus sp. and Lysinibacillus sp.). The organically contaminated soil was supplemented with rhamnolipid biosurfactant and sodium dodecyl benzenesulfonate to increase the degradability of the sorbed contaminants. Soils were treated with organic amendments (composted horse manure vs. dried cow slurry) to promote plant growth and stimulate soil microbial activity. Apart from quantification of the expected decrease in contaminant concentrations (total petroleum hydrocarbons, polycyclic aromatic hydrocarbons), the effectiveness of our approach was assessed in terms of the recovery of soil health, as reflected by the values of different microbial indicators of soil health. Although the applied treatments did not achieve a significant decrease in contaminant concentrations, a significant improvement of soil health was observed in our amended soils (especially in soils amended with dried cow slurry), pointing out a not-so-uncommon situation in which remediation efforts fail from the point of view of the reduction in contaminant concentrations while succeeding to recover soil health.


2020 ◽  
Vol 201 ◽  
pp. 110807 ◽  
Author(s):  
Sajjad Hazrati ◽  
Mohsen Farahbakhsh ◽  
Ghasem Heydarpoor ◽  
Ali Asghar Besalatpour

2012 ◽  
Vol 223-224 ◽  
pp. 63-71 ◽  
Author(s):  
Rafael Clemente ◽  
David J. Walker ◽  
Tania Pardo ◽  
Domingo Martínez-Fernández ◽  
M. Pilar Bernal

Sign in / Sign up

Export Citation Format

Share Document