scholarly journals Neuroprotective Role of Green Tea Polyphenols on the Superior Colliculus in MPTP Mice Model of Parkinson’s Disease

2017 ◽  
Vol 21 (6) ◽  
pp. 1-8
Author(s):  
Philemon Shallie ◽  
Kanyinsola Koya
2007 ◽  
Vol 62 (12) ◽  
pp. 1353-1362 ◽  
Author(s):  
Shuhong Guo ◽  
Jingqi Yan ◽  
Tangbin Yang ◽  
Xianqiang Yang ◽  
Erwan Bezard ◽  
...  

Nutrients ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 834 ◽  
Author(s):  
Sajid Rahman ◽  
Yingying Huang ◽  
Lei Zhu ◽  
Shibin Feng ◽  
Ibrar Khan ◽  
...  

2010 ◽  
Vol 88 (16) ◽  
pp. 3644-3655 ◽  
Author(s):  
Usha Gundimeda ◽  
Thomas H. McNeill ◽  
Jason E. Schiffman ◽  
David R. Hinton ◽  
Rayudu Gopalakrishna

2007 ◽  
Vol 41 (1) ◽  
pp. 16-22 ◽  
Author(s):  
B. Madhan ◽  
G. Krishnamoorthy ◽  
J. Raghava Rao ◽  
Balachandran Unni Nair

2022 ◽  
Author(s):  
Min Hyung Seo ◽  
Sujung Yeo

Abstract Parkinson’s disease (PD) is known as the second most common neurodegenerative disease, which is caused by destruction of dopaminergic neurons in the substantia nigra (SN) of the brain; however, the reason for the death of dopaminergic neurons remains unclear. An increase in α-synuclein (α-syn) is considered an important factor in the pathogenesis of PD. In the current study, we investigated the association between PD and serine/arginine-rich protein specific kinase 3 (Srpk3) in MPTP-induced parkinsonism mice model and in SH-SY5Y cells treated with MPP+. Srpk3 expression was significantly downregulated, while tyrosine hydroxylase (TH) decreased and α-synuclein (α-syn) increased after 4 weeks of MPTP intoxication treatment. Dopaminergic cell reduction and α-syn increase were demonstrated by inhibiting Srpk3 expression by siRNA in SH-SY5Y cells. Moreover, a decrease in Srpk3 expression upon siRNA treatment promoted dopaminergic cell reduction and α-syn increase in SH-SY5Y cells treated with MPP+. These results suggest that the decrease in Srpk3 expression due to Srpk3 siRNA caused both a decrease in TH and an increase in α-syn. This raises new possibilities for studying how Srpk3 controls dopaminergic cells and α-syn expression, which may be related to the pathogenesis of PD. Our results provide an avenue for understanding the role of Srpk3 during dopaminergic cell loss and α-syn increase in the SN. Furthermore, this study could support a therapeutic possibility for PD in that the maintenance of Srpk3 expression inhibited dopaminergic cell reduction.


2020 ◽  
Author(s):  
Jie Wang ◽  
Wei-Yan You ◽  
Qing Ye ◽  
Jia-Qi Zhang ◽  
Chuan He ◽  
...  

Abstract Background: Melanoma-associated antigen D1 (Maged1) is expressed in most adult tissues, predominantly in the brain, and has critical functions in the central nervous system in both developmental and adult stages. Loss of Maged1 in mice has been linked to depression, cognitive disorder, circadian rhythm, and drug addiction. However, the role of Maged1 in Parkinson’s disease (PD) remains unclear.Methods: Immunostaining was performed to investigate the expression of Maged1 in the samples from mice and human. To make the acute mice model of PD, C57BL/6 mice and Maged1 knockout mice were injected with 20 mg/kg 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) four times, every 2-hour intervals. SY5Y cells were treated by 200 μM 1-Methyl-4-phenylpyridinium iodide (MPP+). To examine motor balance and coordination, the rotarod test and pole test were used. Then we further investigated the role of Maged1 deficiency in DA neurons by high-performance liquid chromatography, immunohistochemistry, western blot, CCK8 assay, and gene transfection in vivo or in vitro.Results: Maged1 was expressed in DA neurons of samples from mice and human. And the expression of Maged1 was time-dependently upregulated by the treatment with MPTP or MPP+ in vivo or in vitro. Knockout of Maged1 in mice partly rescued the motor deficits and the reduced levels of striatal dopamine and its metabolites by MPTP treatment. Moreover, Maged1 deficiency protected primary DA neurons and differentiated ReNcell VM cells from MPP+ toxicity. Furthermore, along with the overexpression or downregulation of Maged1 in cultured SH-SY5Y cells, the reduced the cell viability by MPP+ treatment was relatively aggerated or attenuated. The effect of Maged1 deficiency may be attributed to the upregulated Akt signaling pathway and the downregulated mTOR signaling pathway, which further attenuated the MPTP or MPP+ -induced cell apoptosis and impairment of autophagy. Consistent with the above data, the degeneration of midbrain and striatum among 15-m Maged1 knockout mice was relatively mild compared to those in 15-m wild-type mice under physiological conditions.Conclusions: Maged1 deficiency-mediated apoptosis inhibition and autophagy enhancement may be a potential pro-survival mechanism during the progression of PD.


Sign in / Sign up

Export Citation Format

Share Document