Determining the Pancreatic Arginase Activity and a-Amylase Levels in Patients with Type 2 Diabetes and Alcoholic Pancreatitis

Author(s):  
José D. Méndez ◽  
Roberto De Haro ◽  
Verna Méndez-Valenzuela ◽  
Jorge L. Ble-Castillo ◽  
Hector O. Rubio
Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1712 ◽  
Author(s):  
Ali Mahdi ◽  
John Tengbom ◽  
Michael Alvarsson ◽  
Bernhard Wernly ◽  
Zhichao Zhou ◽  
...  

We recently showed that red blood cells (RBCs) from patients with type 2 diabetes mellitus (T2DM-RBCs) induce endothelial dysfunction through a mechanism involving arginase I and reactive oxygen species. Peroxynitrite is known to activate arginase in endothelial cells. Whether peroxynitrite regulates arginase activity in RBCs, and whether it is involved in the cross-talk between RBCs and the vasculature in T2DM, is unclear and elusive. The present study was designed to test the hypothesis that endothelial dysfunction induced by T2DM-RBCs is driven by peroxynitrite and upregulation of arginase. RBCs were isolated from patients with T2DM and healthy age matched controls. RBCs were co-incubated with aortae isolated from wild type rats for 18 h in the absence and presence of peroxynitrite scavenger FeTTPS. Evaluation of endothelial function in organ chambers by cumulative addition of acetylcholine as well as measurement of RBC and vessel arginase activity was performed. In another set of experiments, RBCs isolated from healthy subjects (Healthy RBCs) were incubated with the peroxynitrite donor SIN-1 with subsequent evaluation of endothelial function and arginase activity. T2DM-RBCs, but not Healthy RBCs, induced impairment in endothelial function, which was fully reversed by scavenging of RBC but not vascular peroxynitrite with FeTPPS. Arginase activity was up-regulated by the peroxynitrite donor SIN-1 in Healthy RBCs, an effect that was inhibited by FeTTPS. Healthy RBCs co-incubated with aortae in the presence of SIN-1 caused impairment of endothelial function, which was inhibited by FeTTPS or the arginase inhibitor ABH. T2DM-RBCs induced up-regulation of vascular arginase, an effect that was fully inhibited by FeTTPS. Collectively, our data indicate that RBCs impair endothelial function in T2DM via an effect that is driven by a peroxynitrite-mediated increase in arginase activity. This mechanism may be targeted in patients with T2DM for improvement in endothelial function.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Zhichao Zhou ◽  
Ali Mahdi ◽  
Yahor Tratsiakovich ◽  
Oskar Kövamees ◽  
Jiangning Yang ◽  
...  

We previously showed that increased arginase activity is a key mechanism for endothelial dysfunction in patients with type 2 diabetes mellitus (T2DM) thereby arginase inhibition improves endothelial function. Recently, we demonstrated a crucial role of red blood cells (RBCs) in control of cardiac function via an arginase-dependent regulation of nitric oxide export from RBCs, suggesting a direct interaction of RBCs with cardiovascular function. Considering an increase in arginase activity in T2DM, we hypothesized that RBCs induce endothelial dysfunction in T2DM via up-regulated arginase I. Healthy rat aortas were incubated with RBCs from patients with T2DM (T2DM-RBCs) and age-matched healthy subjects (H-RBCs) for 18 h in the absence and presence of the arginase inhibition or scavenging of reactive oxygen/nitrogen species (ROS/RNS). Following the incubation, endothelium-dependent and -independent relaxations (EDR and EIR) were determined using wire myograph. Human internal mammary arteries (IMAs) obtained from non-diabetic patients who underwent cardiac surgery were also incubated with RBCs for functional evaluation. Arginase activity and protein expression were determined in RBCs. EDR was impaired in vessels incubated with T2DM-RBCs (Emax: 43.2±3.0% in aortas, n=8; 32.3±2.7% in IMAs, n=3) but not H-RBCs (Emax: 74.3±3.4% in aortas; 71.5±5.1% in IMAs) in comparison with buffer (Emax: 74.4±2.3% in aortas; 73.1±5.0% in IMAs; P<0.01 vs. T2DM-RBCs). EIR was not affected by T2DM-RBCs. The impairment in EDR in rat aortas was fully reversed by inhibition of arginase, ROS and RNS in RBCs. Arginase activity was significantly elevated in T2DM-RBCs. The increased arginase activity was attributed to arginase I, as there was increased arginase I expression in RBCs, whereas no arginase II expression was detected. Moreover, high glucose and RNS stimulation increased arginase activity in H-RBCs, while ROS/RNS scavenging decreased arginase activity in T2DM-RBCs. This study demonstrates a novel mechanism behind endothelial dysfunction that T2DM-RBCs induce endothelial dysfunction via ROS/RNS-dependent up-regulation of arginase I. Targeting arginase I in RBCs may serve as a novel therapeutic tool for treatment of endothelial dysfunction in T2DM.


2020 ◽  
Vol 11 ◽  
Author(s):  
Alia Shatanawi ◽  
Munther S. Momani ◽  
Ruaa Al-Aqtash ◽  
Mohammad H Hamdan ◽  
Munir N. Gharaibeh

Type 2 diabetes mellitus (T2DM) is becoming a major contributor to cardiovascular disease. One of the early signs of T2DM associated cardiovascular events is the development of vascular dysfunction. This dysfunction has been implicated in increasing the morbidity and mortality of T2DM patients. One of the important characteristics of vascular dysfunction is the impaired ability of endothelial cells to produce nitric oxide (NO). Additionally, decreases in the availability of NO is also a major contributor of this pathology. NO is produced by the activity of endothelial NO synthase (eNOS) on its substrate, L-arginine. Reduced availability of L-arginine to eNOS has been implicated in vascular dysfunction in diabetes. Arginase, which metabolizes L-arginine to urea and ornithine, competes directly with NOS for L-arginine. Hence, increases in arginase activity can decrease arginine levels, reducing its availability to eNOS and decreasing NO production. Diabetes has been linked to elevated arginase and associated vascular endothelial dysfunction. We aimed to determine levels of plasma NO and arginase activity in (T2DM) patients and the effects of L-citrulline supplementation, a natural arginase inhibitor, on inhibiting arginase activity in these patients. Levels of arginase correlated with HbA1c levels in diabetic patients. Twenty-five patients received L-citrulline supplements (2000 mg/day) for 1 month. Arginase activity decreased by 21% in T2DM patients after taking L-citrulline supplements. Additionally, plasma NO levels increased by 38%. There was a modest improvement on H1Ac levels in these patients, though not statistically significant. The effect of L-citrulline on arginase activity was also studied in bovine aortic endothelial cells (BAECs) grown in high glucose (HG) conditions. HG (25 mM, 72 h) caused a 2-fold increase in arginase activity in BAECs and decreased NO production by 30%. L-citrulline (2.5 mM) completely prevented the increase in arginase activity and restored NO production levels. These data indicate that L-citrulline can have therapeutic benefits in diabetic patients through increasing NO levels and thus maintaining vascular function possibly through an arginase inhibition related pathway.


2018 ◽  
Vol 15 (2) ◽  
pp. 189-191
Author(s):  
Baghdad Science Journal

This study is an attempt to find whether arginine metabolism dysregulation by arginase activity is related to hyperglycemia, followed by changes in nitric oxide (NO) generation in type 2 diabetic patients. This study includes 42 control subjects (Group I), and 92 Iraqi patients with type 2 diabetes mellitus (T2DM). The patient group was subdivided into two groups: Group II (54) with T2DM only and Group III (38) with T2DM and dyslipidemia (who were treating with atorvastatin along with diabetes treatment). The samples were obtained to measure arginase activity and NO levels. Serum arginase activity increased significantly in patients(groupII and groupIII) compared to control group. While serum NO level was significantly lower in diabetic patients as compared to control group, three significant correlations appeared in this study between glucose and arginase activity, glucose and NO levels, and between arginase activity and NO levels. The results also show that treatment with atorvastatin affects arginase activity and NO levels. Increasing in levels of arginase activity can be considered as an indicator of diabetic status. Endothelial dysfunctions accompanied with diabetes mellitus reverses correlation between arginase and NO in diabetic


Sign in / Sign up

Export Citation Format

Share Document