Recent Study on Power Efficient Arithmetic Circuits for Low Power Applications

Author(s):  
G. Navabharat Reddy ◽  
P. A. Harsha Vardhini ◽  
V. Prakasam ◽  
P. Sandeep
Nanophotonics ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 937-945
Author(s):  
Ruihuan Zhang ◽  
Yu He ◽  
Yong Zhang ◽  
Shaohua An ◽  
Qingming Zhu ◽  
...  

AbstractUltracompact and low-power-consumption optical switches are desired for high-performance telecommunication networks and data centers. Here, we demonstrate an on-chip power-efficient 2 × 2 thermo-optic switch unit by using a suspended photonic crystal nanobeam structure. A submilliwatt switching power of 0.15 mW is obtained with a tuning efficiency of 7.71 nm/mW in a compact footprint of 60 μm × 16 μm. The bandwidth of the switch is properly designed for a four-level pulse amplitude modulation signal with a 124 Gb/s raw data rate. To the best of our knowledge, the proposed switch is the most power-efficient resonator-based thermo-optic switch unit with the highest tuning efficiency and data ever reported.


2018 ◽  
Vol 7 (2.16) ◽  
pp. 52
Author(s):  
Dharmavaram Asha Devi ◽  
Chintala Sandeep ◽  
Sai Sugun L

The proposed paper is discussed about the design, verification and analysis of a 32-bit Processing Unit.  The complete front-end design flow is processed using Xilinx Vivado System Design Suite software tools and target verification is done by using Artix 7 FPGA. Virtual I/O concept is used for the verification process. It will perform 32 different operations including parity generation and code conversions: Binary to Grey and Grey to Binary. It is a low power design implemented with Verilog HDL and power analysis is implementedwith clock frequencies ranging from 10MhZ to 100GhZ. With all these frequencies, power analysis is verified for different I/O standards LVCMOS12, LVCMOS25 and LVCMOS33.  


2018 ◽  
Vol 7 (3.3) ◽  
pp. 107
Author(s):  
Jae Young Chun ◽  
Kee Soo Yeom ◽  
Eon. Gon. Kim

Due to the increasing demand for low power communication in the field of remote control & monitoring, it is necessary to introduce a communication technique to meet the various QoS requirements even in an inferior radio channels. In order to ensure these QoS requirements, we propose a communication technique that applies the channel code, diversity scheme into power-efficient modulation. It makes the radio possible to dramatically improve BER by reducing the uncertainty due to fading channels. A core of proposed communication technique is to maximize the performance gain by adopting diversity technique and channel coding scheme. Diversity gain and channel coding gain further increase the performance difference (gain) between power-efficient modulation and conventional modulation, resulting in a signification BER improvement. By adapting the proposed communication technique it is expected to improve the usability of low-power radio according to the satisfaction of the various QoS requirements.  


In present scenario world become completely digital. In digital devices the speed and life of the battery is the biggest issue .To resolve these problems there are my techniques for design the devices. A low power design technique is Gate Diffusion input (GDI). This review has the study of GDI technique which is most recent research in low power designing field. In this study many paper were reviewed. The review has structure of THE GDI cell, modeling and application. This review also presented the comparison of GDI technique with other technique of designing. The purpose of the study to find out most recent research in field of GDI. From this study we find out this technique mostly used for digital circuits. This review provides the current state of research and future scopes in this field.


Author(s):  
S. Rakesh ◽  
K. S. Vijula Grace

Finite impulse response (FIR) filters find wide application in signal processing applications on account of the stability and linear phase response of the filter. These digital filters are used in applications, like biomedical engineering, wireless communication, image processing, speech processing, digital audio and video processing. Low power design of FIR filter is one of the major constraints that researchers are trying hard to achieve. This paper presents the implementation of a novel power efficient design of a 4-tap 16-bit FIR filter using a modified Vedic multiplier (MVM) and a modified Han Carlson adder (MHCA). The units are coded using Verilog hardware description language and simulated using Xilinx Vivado Design Suite 2015.2. The filter is synthesized for the 7-series Artix field programmable gate array with xc7a100tcsg324-1 as the target device. The proposed filter design showed an improvement of a maximum of 57.44% and a minimum of 2.44% in the power consumption compared to the existing models.


Author(s):  
Maytham Safar ◽  
Hasan Al-Hamadi ◽  
Dariush Ebrahimi

Wireless sensor networks (WSN) have emerged in many applications as a platform to collect data and monitor a specified area with minimal human intervention. The initial deployment of WSN sensors forms a network that consists of randomly distributed devices/nodes in a known space. Advancements have been made in low-power micro-electronic circuits, which have allowed WSN to be a feasible platform for many applications. However, there are two major concerns that govern the efficiency, availability, and functionality of the network—power consumption and fault tolerance. This paper introduces a new algorithm called Power Efficient Cluster Algorithm (PECA). The proposed algorithm reduces the power consumption required to setup the network. This is accomplished by effectively reducing the total number of radio transmission required in the network setup (deployment) phase. As a fault tolerance approach, the algorithm stores information about each node for easier recovery of the network should any node fail. The proposed algorithm is compared with the Self Organizing Sensor (SOS) algorithm; results show that PECA consumes significantly less power than SOS.


Sign in / Sign up

Export Citation Format

Share Document