scholarly journals General and Specific Combining Ability in Sesame (Sesamum indicum L.) for Seed Yield and Related Traits

Author(s):  
S. H. Prakash ◽  
Tapash Dasgupta

Combining ability study on seed yield per plant from a 7x 7 half-diallel cross of sesame over two years showed that both general combining ability (gca) and specific combining ability (sca) variances important for controlling the traits. Thus, the objectives of this study were to evaluate the gene action and select appropriate parents/crosses using combining ability analysis. Both additive and non additive was of greater significance for seed yield per plant, capsules per plant, days to flowering and oil content. Non additive genetic variances were in the genetic for 1000 seed weight and branches per plant. On the contrary preponderance of additive genetic was found in the inheritance of capsule length and seeds per capsule. The relative magnitude non-additive year interaction was larger than additive x year interaction. The variety Suprava was the best general combiner for seed yield and its major components except oil content. The cross combinations Suprava x Savitri, Suprava x JLT 408 and EC 90 x Savitri would be the best choices for obtaining desirable recombinants. Suprava x Savitri having additive gene control emerged as the best specific combiner for yield and its components except oil content. For improving seed yield and oil content simultaneously, the specific combiner IC 59 x Savitri was identified to be ideal as this cross mostly controlled by additive gene action and hence desirable recombinants can be obtained in early segregating generation. Breeding strategy for different crosses has been discussed in details. The information could help sesame breeders for appropriate selection of parents with high yield potential and oil content to develop future hybridization programs.

Author(s):  
Ranjana Patial ◽  
R. K. Mittal ◽  
V. K. Sood ◽  
Shahnawaz Ahmed

An experiment was carried out in blackgram using line x tester mating design to estimate the GCA effect of parents and SCA effect of 54 hybrids for yield and its traits using 27 lines and two testers. The relative estimates of variance due to specific combining ability (SCA) were higher than general combining ability (GCA) variances for all twelve traits, indicating predominance of non-additive gene action. Combining ability estimates showed significant genetic variance in lines for all traits whereas testers had significant genetic variance for nine traits. On the basis of GCA effects, among the lines and testers IC-436910, IC-413306, IC-398973, IC-343885 and HPBU-111 respectively, were good combiners for most of the traits and can be used in future breeding programme. Specific combining ability studies indicated cross IC-436910 x HPBU-111 as best specific combiner for the economically important traits viz., plant height, branches per plant, seed yield per plant and days to 75% maturity. Such crosses could be further exploited to obtain transgressive segregants in future breeding programme.


Author(s):  
Anamika Nath ◽  
S. R. Maloo ◽  
Baudh Bharti ◽  
R. B. Dubey ◽  
Rajani Verma

A diallel method was employed in which eight genotypically diverse lines of mungbean were crossed among themselves in all possible combinations excluding reciprocals. The mean square due to general combining ability (GCA) and specific combining ability (SCA) were significant for all the characters except mean square due to (SCA) for clusters per plant and seed yield per plant indicating importance of both additive as well as non-additive gene action. The estimates of variances due to specific combining ability were higher than general combining ability for all the traits except days to 50 % flowering, primary branches per plant, clusters per plant and seed yield per plant pointed out to be the preponderance of non-additive gene effects in the expression of these characters. Whereas predictability ratios were greater than the value of 0.5 for days to 50 % flowering, primary branches per plant, clusters per plant and seed yield per plant indicating the predominance of additive gene action for these characters. However, predictability ratio exhibited less than 0.5 values for rest of the characters indicating the predominance of non- additive gene action. The good general combiners for seed yield per plant were BM-4, PDM-139, ML-131, and IPM 99-125. The best specific cross combinations wereRMG-344 x RMG-1045, RMG-1035 x RMG-1045 and BM-4 x PDM-139. showed the highest positive significant SCA effect for seed yield per plant. These cross combinations could be utilized for further use in breeding programme for improvement in yield of mungbean.


1966 ◽  
Vol 46 (1) ◽  
pp. 59-67 ◽  
Author(s):  
Eric D. Putt

Heterosis occurred for the eight plant and seed characters studied. It was most frequent for yield of seed and height of plant. Mean squares for general combining ability (gca) and specific combining ability (sca) were significant (P =.01) for all characters. The estimated components for gca were greater than for sca for days to mature, weight per bushel, and percent oil in the seed; less for height and yield of seed; and essentially the same for days to bloom, diameter of head, and weight per 1000 seeds.The yield of seed and percent oil in the seed, for the highest ranking 100 synthetics that could be composed from the 10 lines, was predicted in F6 assuming 50 and 60% outcrossing between F2 and F6. Virtually all values exceeded the mean performance of four check samples of commercial hybrids. Many exceeded the highest rank check for oil content in the seed. Fourteen of the highest ranking 100 synthetics for yield and 30 for oil content consisted of two or three lines. It was concluded that synthetics can be superior to the present hybrids in heterosis and that desirable synthetics can be made from only a few lines.


2018 ◽  
Vol 43 (4) ◽  
pp. 599-609
Author(s):  
ANMS Karim ◽  
S Ahmed ◽  
AH Akhi ◽  
MZA Talukder ◽  
A Karim

Combining ability effects were estimated for grain yield and some other important agronomic traits of maize in a 7×7 diallel analysis excluding reciprocals. The variances for general combining ability (GCA) were found significant for yield, days to pollen shedding, days to silking and ear height while it was found non-significant for plant height and number of kernels/ear. Non-significant general combining ability (GCA) variance for plant height and number of kernels/ear indicates that these two traits were predominantly controlled by non- additive type of gene action. Specific combining ability (SCA) was significant for all the characters except yield and days to silking. Non-significant specific combining ability (SCA) variance for yield and days to silking suggests that these two traits were predominantly controlled by additive type of gene action. Both GCA and SCA variances were found significant only in days to pollen shedding and ear height indicated the presence of additive as well as non additive gene effects for controlling the traits. However, relative magnitude of these variances indicated that additive gene effects were more prominent for all the characters studied except days to silking. Parent BIL95 was the best general combiner for both high yield and number of kernels/ear and parent BML4 for dwarf plant type. Two crosses (BML4× BML36 and BIL114× BIL31) exhibited significant and positive SCA effects for grain yield involved low × average and average × average general combining parents. The range of heterosis expressed by different crosses for grain yield and days to silking was from -65.83 to 21.26 percent and -17.85 to 8.22 percent, respectively.. The better performing three crosses (BIL114×BIL31, BIL138×BIL95 and BIL31×BIL95) can be utilized for developing high yielding hybrid varieties as well as for exploiting hybrid vigour.Bangladesh J. Agril. Res. 43(4): 599-609, December 2018


Ceiba ◽  
2012 ◽  
Vol 51 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Bruno Galvêas Laviola ◽  
Rodrigo Barros Rocha ◽  
Adilson Kenji Kobayashi ◽  
Tatiana Barbosa Rosado ◽  
Leonardo Lopes Bhering

Jatropha curcas L. is a perennial oilseed crop belonging to the Euphorbiaceae family, whose oil content in seeds varies from 33 to 38%, giving a yield potential of over 1200 kg of oil per hectare. However, it is a non-domesticated species and research is required for commercial exploration of this species for biodiesel production. The strategies of Embrapa’s jatropha breeding program aim at developing cultivars with high yield and oil content, non-toxic (absence of phorbol esters), resistant to biotic and abiotic stresses and adapted to the main producing regions of Brazil. The program activities started with the enrichment and characterization of the germplasm bank, currently with over 200 accessions from different regions of Brazil. Depending on the specific objectives of the program, different selection and breeding methods are employed. In order to understand the genetic control of specific traits and to generate segregating populations, experimental designs such as diallel crosses, which allow the estimation of heterosis, general combining ability and specific combining ability among genotypes, have been adopted. In addition, molecular markers such as SSR and SNPs are being developed and may help in early selection for characters such as the absence of toxicity in the grains. The program also includes the study on genotype × environment interaction with the evaluation of the progenies/improved clones in different regions of Brazil, which is essential for recommending cultivars for specific or broad climatic conditions. In conclusion, considering that J. curcas is a perennial species and still not domesticated, approximately 5-7 years will be required to obtain improved cultivars and evidence-based information on crop production systems to support commercial cultivation.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mandakini Kabi ◽  
Bhabendra Baisakh ◽  
Manasi Dash ◽  
Swapan K Tripathy ◽  
S. Sahu ◽  
...  

The study of gene action and combining ability have been conducted in 28 F1 cross combinations along with eight parents in 8x8 half-diallel scheme following Griffing’s Approach for 14 morphoeconomic traits including seed yield and oil content in sesame. The general combining ability (GCA) and specific combining ability (SCA) component of variation were significant for parents and crosses respectively for all characters except internode length for GCA indicating role of both additive and nonadditive gene action. However, higher proportion of SCA variance (?2 sca) than GCA variance (?2 gca) revealed preponderance of non-additive gene action for all characters except capsule length and capsule width under study. Further, variance due to dominance played a significant role than additive variance in all traits except capsule width and 100-seed weight. Nirmala is considered as the best general combiner owing to its higher estimate of gca effects for yield per plant, for days to maturity, plant height, branches per plant, capsules per plant, seeds per capsule, capsule length and 100-seed weight. Among cross combinations; Rama × GT-10, AT-382 × Krishna, AT-382 × Nirmala, Krishna × Nirmala, Krishna × Uma, Nirmala × Prachi and Prachi × Uma showed significantly higher sca effect for seed yield per plant in the desired direction indicating their merit for recovery of transgressive segregants for higher productivity following reciprocal recurrent selection.


2000 ◽  
Vol 134 (2) ◽  
pp. 191-198 ◽  
Author(s):  
C. G. IPSILANDIS ◽  
M. KOUTSIKA-SOTIRIOU

Starting with the F2 generation of the single-cross commercial hybrid Lorena (PR3183), recombinant lines were developed combining half-sib/S1 evaluation on widely spaced plants in the direction of high yielding per se. Combining ability tests consisted of crosses between: (a) recombinant lines of common pedigree and (b) recombinant lines and freely available inbred lines. The highest-yielding crosses between recombinant lines reached 100% of the original F1 hybrid in a percentage of 14·2. Low heterosis was estimated owing to additive gene action of recombinant lines. Crosses between recombinant lines and freely available inbred lines outyielded significantly the commercial F1 hybrid in a percentage of 33·3. Heterosis was greater and the original F1 hybrid was outyielded significantly because of non-additive gene action. When the applied breeding procedure on a source population with high yield adaptability is adopted and where effects of intergenotypic competition masking the inherent genotypic value are controlled, population improvement may be substituted by combined half-sib/S1 selection for productivity of lines per se in low stress conditions during the very early stages.


Author(s):  
Reshmi Rani Das ◽  
Goutam Das ◽  
Pranab Talukdar ◽  
Seuji Bora Neog

The present investigation was conducted comprising of the parental lines and F1 progenies derived from a 6 x 6 diallel cross among cowpea varieties, excluding reciprocals. Analysis of variance revealed presence of sufficient variation among the genotypes for all the characters studied. For seed yield both GCA and SCA variances were significant, while GCA variance was significant for pods per cluster and SCA variance was significant for plant height, number of primary branches and pod length. Variety JCC-4 followed by UPC-622 were good general combiner for yield and yield attributing characters. Maximum SCA effect for seed yield per plant was observed with cross JCC-1 x JCC-4 followed by JCC-3 x JCC-4. Genetic analysis revealed that both additive (D) and dominance (H1 and H2) components were involved in controlling most of the characters. The predominant role of non-additive gene action was evident from relatively higher magnitude of dominance components, including H1, H2 and h2.


1970 ◽  
Vol 23 (2) ◽  
pp. 1-6
Author(s):  
R Podder ◽  
MG Rasul ◽  
AKMA Islam ◽  
Mak Mian ◽  
JU Ahmed

A half diallel set of five parents and their 10 F1’s were studied to determine the combining ability and magnitude of heterosis for eight important characters in snakegourd at the experimental field of Bangabandhu Sheikh Mujibur Rahman Agricultural University during April to July, 2004. Combining ability analysis revealed that both general and specific combining ability variances were significant for all the characters except fruit diameter and fruit yield per plant. Predominance of additive gene action was noted for all the characters except days to first female flower where non-additive gene action was predominant. Parent P1 was the best general combiner for fruit yield and some yield contributing characters. Among the crosses P2  X P3, P1  X P2 and P1  X P4 were the best specific combiner for fruit yield and some of yield contributing characters. Both positive and negative heterosis was obtained of which few hybrids showed desirable and significant values. P2  X P5 showed the highest significant mid parental heterotic value for earliness and high yield whereas, P1  X P2, P2  X P3, P2  X P5 and P3  X P4 showed the highest significant better parent heterotic effect for earliness and high yield. Key words: Snakegourd (Trichosanthes cucurminata L.); combining ability; heterosis; fruit yieldDOI: http://dx.doi.org/10.3329/bjpbg.v23i2.9318 Bangladesh J. Pl. Breed. Genet., 23(2): 1-6, 2010


2019 ◽  
Vol 44 (2) ◽  
pp. 253-259
Author(s):  
HZ Raihan ◽  
S Sultana ◽  
M Hoque

An experiment on combining ability was carried out with 21 crosses produced from 7×7 diallel cross without reciprocal for grain yield and yield contributing characters in maize. Analysis of variance for combining ability showed that mean square (MS) due to GCA & SCA were highly significant for all characters except GCA in plant height, cob length and 1000 grain weight and SCA in maturity and row/cob indicated that all but mentioned traits were governed by both additive and non-additive gene action. Variances due to GCA were higher for all characters except thousand grain weight revealed that the predominance of additive gene action for all characters except thousand grain weight. Parent CML 487 and Ki 21 were the best general combiner for yield and most of the yield contributing characters. Parent BMZ 57 & BMZ 15 were the best general combiner for dwarf & earliness in plant. Among all the crosses CML 473 × Ki 21, CML 487 × Ki 21 and CML 429 × BIL 182 exhibited significant positive SCA effect for grain yield. The cross CML 429 × BIL 182 may be considered as the best cross with recorded significant mean value and desired SCA for traits like 1000 grain weight, yield (t/ha), days to 50% pollen shedding, days to 50% silking, plant height, ear height and days to maturity. The promising single crosses with significant and positive SCA could be used for variety development after verifying them across locations. Bangladesh J. Agril. Res. 44(2): 253-259, June 2019


Sign in / Sign up

Export Citation Format

Share Document