scholarly journals Detection of Organic Additives in Copper Plating Bath Using Voltammetric Methods That Involve a Screen-printed Nano-Au Electrode

Author(s):  
Yu-Ching Weng ◽  
Jhih-Jie Huang ◽  
Chih-Yao Wang ◽  
Miao-Zhen Hong

Three electrochemical methods used to detect organic additives, A, B and C, in acidic plating baths. Cyclic voltammetric stripping (CVS) is used in industry to detect the concentration of organic additives indirectly by measuring the effect of commercial organic additives on the rate of copper deposition. This study directly determines the concentration of organic additives on a screen-printed nano-Au electrode at high potential using three different electrochemical methods: linear scanning voltammetry (LSV), differential pulse voltammetry (DPV) and square wave voltammetry (SWV). The results show that the response currents for the three electrochemical methods exhibit a linear relationship with the concentration of organic additives. The nano-Au electrode is the most sensitive device for the detection of organic additive B using LSV.

2017 ◽  
Vol 9 (37) ◽  
pp. 5449-5454 ◽  
Author(s):  
Min Wei ◽  
Shuo Feng

A signal-off aptasensor for OTA detection at an apt/cDNA/AuNPs/cPC/NH2–AuE electrode using methylene blue as an electrochemical probe.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3926 ◽  
Author(s):  
Umi Mohd Azmi ◽  
Nor Yusof ◽  
Norzila Kusnin ◽  
Jaafar Abdullah ◽  
Siti Suraiya ◽  
...  

A rapid and sensitive sandwich electrochemical immunosensor was developed based on the fabrication of the graphene/polyaniline (GP/PANI) nanocomposite onto screen-printed gold electrode (SPGE) for detection of tuberculosis biomarker 10-kDa culture filtrate protein (CFP10). The prepared GP/PANI nanocomposite was characterized using Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM). The chemical bonding and morphology of GP/PANI-modified SPGE were studied by Raman spectroscopy and FESEM coupled with energy dispersive X-ray spectroscopy, respectively. From both studies, it clearly showed that GP/PANI was successfully coated onto SPGE through drop cast technique. Cyclic voltammetry was used to study the electrochemical properties of the modified electrode. The effective surface area for GP/PANI-modified SPGE was enhanced about five times compared with bare SPGE. Differential pulse voltammetry was used to detect the CFP10 antigen. The GP/PANI-modified SPGE that was fortified with sandwich type immunosensor exhibited a wide linear range (20–100 ng/mL) with a low detection limit of 15 ng/mL. This proposed electrochemical immunosensor is sensitive, low sample volume, rapid and disposable, which is suitable for tuberculosis detection in real samples.


2008 ◽  
Vol 61 (12) ◽  
pp. 962 ◽  
Author(s):  
Shao-Hua Zuo ◽  
Ling-Fan Zhang ◽  
Yan-Hui Zhao ◽  
Hui-Hui Yuan ◽  
Min-Bo Lan ◽  
...  

A simple, disposable and inexpensive electrochemical DNA biosensor based on a zirconia (ZrO2) modified thin film screen-printed electrode (ZrO2/SPE) has been developed. Short DNA sequences (21 monomer units) from the Escherichia coli pathogen, modified with a phosphate group at the 5′ end, were attached to the surface of the electrode through the affinity of the phosphate group for zirconia, to produce an effective DNA probe (ssDNA/ZrO2/SPE). DNA immobilization and hybridization were characterized using differential pulse voltammetry by employing methylene blue as redox indicator. Target sequences hybridized with the probe resulted in a decrease of the reduction peak current of methylene blue intercalated into the probe. The response of a non-complementary sequence and a single base pair mismatch sequence were both clearly distinguished from that of a complementary sequence. The developed biosensor had a high selectivity and sensitivity towards hybridization detection (10–10 M complementary DNA detectable). Making use of screen-printed technology, the fabrication of the biosensors exhibited satisfactory reproducibility, investigated by cyclic voltammetry and differential pulse voltammetry. The relative standard deviation was found to be <3.0% for six bare SPEs and six ssDNA-modified SPEs (ssDNA/ZrO2/SPE) from a batch.


2005 ◽  
Vol 3 (1-2) ◽  
pp. 43-53 ◽  
Author(s):  
Ivana Šestáková ◽  
Tomáš Navrátil

The application of voltammetric methods using different rates of polarisation on HMDE reveal inert or labile behaviour of Cd- or Zn- complexes in the presence of excessive cadmium or zinc ions in solution. This phenomenon was demonstrated first on the simplest phytochelatin – complex of peptide(γ-Glu-Cys)2Glywith cadmium, later on rabbit liver metallothioneins –Cd7MTin the presence of cadmium andCd5Zn2MTin the presence of zinc. Voltammetric methods can distinguish between labile and inert complexes present simultaneously and therefore could elucidate their role in reactions of metal ion transfer.Another method using different rates of polarisation – elimination voltammetry with linear scan – proved that S-tetracoordinated complexes of Cd(II) or Zn(II) in the above-mentioned metallothioneins on HMDE are reduced in the adsorbed state. This implies the possibility of increasing the sensitivity of identification or determination of the above complexes. On carbon composite electrode, similar behaviour of Cd-complexes as on HMDE was observed using differential pulse voltammetry.


2020 ◽  
Vol 8 ◽  
Author(s):  
Mohammad Reza Aflatoonian ◽  
Somayeh Tajik ◽  
Behnaz Aflatoonian ◽  
Hadi Beitollahi ◽  
Kaiqiang Zhang ◽  
...  

In this paper, graphene (Gr)/Co3O4 nanocomposite was synthesized and utilized for the development of a novel electrochemical sensor to detect tramadol. Tramadol determination was examined by linear sweep voltammetry, differential pulse voltammetry, cyclic voltammetry, and chronoamperometry on Gr/Co3O4 nanocomposite-modified screen-printed electrode (Gr/Co3O4/SPE) in phosphate-buffered saline (PBS). Under the optimized condition, the detection limit of tramadol is 0.03 μM (S/N = 3) in the linear ranges of 0.1–500.0 μM. Furthermore, Gr/Co3O4/SPE was satisfactorily utilized to detect tramadol in tramadol tablet and urine specimens.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Xinke Liu ◽  
Rajalakshmi Sakthivel ◽  
Chia-Yin Cheng ◽  
Jiangliu Luo ◽  
Lijun Song ◽  
...  

AbstractPolychlorinated biphenyls (PCBs) are persistent organic pollutants that are widely distributed in the environment. It is noteworthy that the PCBs are endocrine-disrupting substances, and their toxicity induces cancer and damage to the mammalian reproductive system, immune system, stomach, skin, liver, etc. This work aimed to synthesize 3A-amino-3A-deoxy-(2AS, 3AS)-β-cyclodextrin hydrate/tin disulfide composite material and to study its material properties, electrochemical properties, and application to PCB detection. The nanostructured tin disulfide (SnS2) synthesized by hydrothermal technique and 3A-amino-3A-deoxy-(2AS, 3AS)-β-cyclodextrin hydrate were sequentially modified onto the disposable screen-printed carbon electrode (SPCE) via titration using a micropipette. The 3A-amino-3A-deoxy-(2AS, 3AS)-β-cyclodextrin hydrate (β-CD) improved the selectivity of the modified electrode. The fabricated β-CD/SnS2/SPCE was employed to determine the presence of PCBs by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The detection range was 0.625–80 μM, with a limit detection of approximately 5 μM. The electrodes were as stable as 88% after 7 days’ storage. The results showed that the β-CD successfully encapsulated PCBs to achieve an electrochemical sensor that reduced the time and increased the convenience of PCBs detection.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Alina Elena Trofin ◽  
Lucia Carmen Trincă ◽  
Elena Ungureanu ◽  
Adina Mirela Ariton

Measurement of antioxidant capacity represents an analytical major challenge in terms of accuracy, efficiency, rapid response, or low cost of detection methods. Quantification of antioxidant capacity of food samples using disposable screen‐printed microelectrodes (SPMEs) was based on cyclic voltammetry versus open-circuit potential (CV vs OCP) and differential pulse voltammetry (DPV) as compared with spectrophotometric measurement of the CUPRAC reaction with 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (trolox). The SPMEs are organic‐resistant electrodes and thus compatible with food samples and organic solvents used to dissolve trolox. A micropipette was used to release a drop of 50 μL sample on the spotted surface of the SPME sensor/working electrode that was time programmed to function according to the working protocol. The SPME response was linearly correlated with trolox content. This preliminary demonstration was focused on the analysis of tea infusions, due to the simplicity and reproducibility of the samples’ preparations involved. Analytical results of the antioxidant capacity (expressed as mol·L−1 trolox equivalents) of the tea samples showed a good agreement in the case of spectrophotometry and differential pulse voltammetry (R2 > 0.998). DPV with SPME based on CUPRAC reactions was proven to be a promising approach for the characterization of antioxidant capacity of tea samples with rapid response, cost-effectiveness, and simplicity of operation.


Sign in / Sign up

Export Citation Format

Share Document