scholarly journals Effect of Soil Particle Sizes on Determination of pH, Oxidizable Organic Carbon and Available Phosphate

Author(s):  
Amrit Tamang ◽  
Hriday Kamal Tarafder ◽  
Sagar Tamang ◽  
Ranjan Kumar Basak

Soil analysis is integral part of present agricultural farming, where soil samples are particularly determines with 2 mm sieved soil. It is highly related that finer particles pass through 80 mesh (0.2 mm) size had better interaction with concentrated chemical solution or extractant. Total 136 number of soil sample were collected from different agricultural land of Terai region of West Bengal to conducted the study on effect of soil particle sizes passes through 20 mesh (2 mm) and 80 mesh (0.2 mm) sieve on soil pH, oxidizable organic carbon and available phosphate. Thus, each sample was portioned into two particle size classes. Such as ‘80 mesh soil particles’ and ‘20 mesh soil particles’. The pH, oxidizable organic carbon (OCC) and available phosphate contents of two particle sizes of each soil sample were determined and compared. The maximum difference of 0.2 unit was recorded in case of pH analysis with both sieve sizes. The mean organic carbon content of soil particles that passed through 20 mesh 80 mesh sieve was 0.674 and 0.683 respectively, which further signifies organic carbon content value of 80 mesh soil particle size was slightly greater than that of 20 mesh soil particle size. The value of P content by different sieve size had maximum difference 0.2 kg P2O5 ha-1 and for some soils there was no difference. The difference mean of phosphate values of two particle sizes was 0.134 only. This difference is neglected for crop production. Thus, soil sieved through two sieve sizes 20 mesh 80 mesh sieve had no effect with soil pH, little influence on OCC and negligible effect on available phosphate content.

2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Jhon Jairo Palechor-Tróchez ◽  
Luis Eduardo Ordoñez Santos ◽  
Hector Samuel Villada-Castillo

The CIEL∗a∗b∗ coordinates and the total organic carbon content in compost were correlated. Two particle sizes of 0.5 and 2 mm were obtained in the compost samples; the surface color was analyzed with a CIEL∗a∗b∗ colorimeter and the total organic carbon content by spectrophotometry at 588.9 nm. The results indicate that all chromaticity values were significantly affected (p<0.001) by particle size. Chromaticity values a∗, b∗, C∗, and h° showed significantly strong Pearson correlations (r>0.95). The coordinates a∗ (r=−0.992) and b∗ (r=0.968) have the potential to be used in estimating the total organic carbon concentration in the compost samples analyzed.


2015 ◽  
Vol 12 (2) ◽  
pp. 34-38 ◽  
Author(s):  
Ashim Kumar Saha ◽  
Apu Biswas ◽  
Abdul Qayyum Khan ◽  
Md. Mohashin Farazi ◽  
Md. Habibur Rahman

Long-term tea cultivation has led to degradation of the soil. Old tea soils require rehabilitation for restoring soil health. Soil rehabilitation by growing different green crops can break the chain of monoculture of tea. An experiment was conducted at The Bangladesh Tea Research Institute (BTRI) Farm during 2008-2011 to find out the efficiency of different green crops on the improvement of soil properties. Four green crops such as Guatemala, Citronella, Mimosa and Calopogonium were grown to develop the nutritional value of the degraded tea soil. Soil samples were collected and analyzed before and at the end of experiment. Soil pH was increased in all four green crops treated plots with the highest increase in Citronella treated plots (from 4.1 to 4.5). Highest content of organic carbon (1.19%) and total nitrogen (0.119%) were found in Mimosa and Calopogonium treated plots, respectively. Concentration of available phosphorus, calcium and magnesium in all green crops treated plots were above the critical values, while available potassium content was above the critical value in Guatemala, Citronella and Mimosa treated plots. Changes in soil pH and available potassium were significant, while changes in organic carbon content, total nitrogen and available calcium were insignificant. Changes in available phosphorus and magnesium were significant. The Agriculturists 2014; 12(2) 34-38


Author(s):  
Jinsheng Li ◽  
Jianying Shang ◽  
Ding Huang ◽  
Shiming Tang ◽  
Tianci Zhao ◽  
...  

The distribution of soil particle sizes is closely related to soil health condition. In this study, grasslands under different grazing intensities and different cultivation ages grasslands were selected to evaluate the dynamics of soil particle size redistribution in different soil layers. When the grazing intensity increased, the percentage of 2000~150-μm soil particles in the 0–10-cm soil layer decreased; 150~53-μm soil particles remained relatively stable among the grazing intensities—approximately 28.52%~35.39%. However, the percentage of less than 53-μm soil particles increased. In cultivated grasslands, the larger sizes (>53 μm) of soil particles increased and the smaller sizes (<53 μm) decreased significantly (p < 0.05) in the 0–10 cm-soil layer with increasing cultivation ages. The increase in small soil particles (<53 μm) in topsoil associated with grazing intensity increased the potential risk of further degradation by wind erosion. The increase in big soil particles (>53 μm) in topsoil associated with cultivation ages decreased the soil capacity of holding water and nutrient. Therefore, to maintain the sustainability of grassland uses, grazing grasslands need to avoid heavy grazing, and cultivated grasslands need to change current cultivation practices.


2015 ◽  
Vol 72 (7) ◽  
pp. 1234-1242 ◽  
Author(s):  
K. Wada ◽  
N. Takei ◽  
T. Sato ◽  
H. Tsuno

This study aims to explore the influential sources of organic matter in first flush runoff from urban roadways by comparing organic carbon content and particle size distribution in road dust with those from discharge from vehicles during rainfall. Samples on first flush runoff and road dust were collected from urban roadways. In addition, vehicle drainage was assumed to flow from vehicles during rainfall events, so vehicle wash-off water was collected by spraying water onto the top and from the underside of vehicles to simulate accumulation during a vehicle run. In road dust, the organic carbon content in the &lt;0.2 mm fraction was about twice that of the 0.2–2 mm fraction. The particle size distributions of both first flush runoff and vehicle wash-off water were similar, and particles &lt;0.2 mm contributed to over 95% of the total volume. The dissolved organic carbon concentration in the vehicle wash-off water was considerably higher than that in the road dust/water mixture. The total organic carbon content in road dust was positively correlated with annual daily traffic. Therefore, vehicles were thought to strongly influence the nature of road dust.


1989 ◽  
Vol 61 (2) ◽  
pp. 89-97
Author(s):  
Raina Niskanen

The extractability of soil Al, Fe and Mn were studied in 102 mineral soil samples. The extractants were 0.05 M oxalate (pH 2.9), 0.05 M K4P2O7 (pH 10), 0.02 M EDTA (pH 5.3) and 1 M CH3COONH4 (pH 4.8). In the group of clay and silt soils (n = 51), the Al extracted by the four extractants correlated closely; the r values ranged from 0.91*** to 0.96***; in coarser soils (n = 51) the r values ranged from 0.42* to 0.82***. In clay and silt soils, the organic carbon content and soil pH together explained 50 % of the variation in oxalate-extractable Al, 70 % of the variation in pyrophosphate-extractable Al, 53 % of the variation in pyrophosphate-extractable Fe and 56 % of the variation in acetate-extractable Al. The clay and organic carbon contents together with soil pH explained 77 % of the variation in EDTA-extractable Al in clay and silt soils. In coarse soils, the extractable metals were not closely related to the soil characteristics.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8175 ◽  
Author(s):  
Aleksandra Bielecka ◽  
Elżbieta Królak

Solidago canadensis L. is a drought-tolerant, invasive plant, characterized by a large biomass of underground and aboveground parts. The aim of this study was to assess the accumulation of manganese (Mn) and copper (Cu) in the roots and rhizomes and the stems, leaves, and inflorescence parts in S. canadensis from two locations that differed in soil pH, organic carbon, and Mn and Cu concentrations. The concentration of the metals in the samples was determined by the AAS method; the pH was determined by the potentiometric method; and the content of organic carbon was determined using Tiurin’s method. The concentration of Mn and Cu in the roots of S. candensis correlated with the concentrations of the metals in the soil without regard to the soil condition or its organic carbon content. With a low soil pH and organic carbon content, Mn accumulation per 1 ramet in the aboveground parts of S. canadensis consisted over 50% of the total Mn content in the plant. In neutral or alkaline soils, the amount of Mn per 1 ramet accumulated in underground parts was over 60%. Regardless of the soil conditions, about 35% of Mn accumulated in rhizomes. Approximately 60% of copper accumulated in the underground parts of S. candensis (45% in rhizomes) without regard to the soil reaction or organic carbon content. The ability of the plant to accumulate large amounts of metals disposes Solidago canadensis as a candidate for the phytoremediation of soils contaminated with heavy metals.


Sign in / Sign up

Export Citation Format

Share Document