scholarly journals Customized Fertilizers- All in One a Review

Author(s):  
S. K. Choudhary ◽  
Rajesh Kumar ◽  
Arun Kumar ◽  
Rakesh Deo Ranjan

Blanket fertilizer recommendations for different crops have caused poor nutrient supply, low nutrient use efficiency and limited crop response. Customized fertilizers may help to sustain soil health by ensuring appropriate fertilization. Hence, specific customized fertilizers should be promoted to counteract the problem of expanding multi-nutrient deficiencies in soils. In India, among the nutrients, NPK remain the major ones for increased and sustained productivity. However, the development of high yielding systems will likely exacerbate the problem of secondary and micronutrient deficiencies, not only because larger amounts are removed, but also because the application of large amounts of N, P and K to achieve higher yield targets, as a result in the intensive systems there is every possibility to build up of negative balance and deficiency of secondary and micronutrients. To attain high future targets, customized fertilizers will play a very important role. The development of site and crop specific readymade customized fertilizers based on scientific principles may prove to be more effective to meet the plant requirement and enhance nutrient use efficiency. Such an approach is also likely to boost crop yields and arrest soil fertility decline in a long-run. Thus, this article discusses the manufacturing methodologies, eligibility criteria, success in Indian fertilizer industry, adoption of fertilizer recommendations and problems in marketing of customized fertilizer.

2021 ◽  
Vol 21 (No 1) ◽  
Author(s):  
Barkha . ◽  
Ananya Chakraborty

Nutrient use efficiency (NUE) is an important concept in the evaluation of crop production systems. With emerging nutrient deficiencies under intensive agriculture, there is a need to improve NUE. One of the approaches to enhance it is by judicious use of fertilizers (adequate rate, effective source, methods and time of application) as well as inclusion of organic manures. Organic nutrient sources are very effective but as their availability is not sufficient to meet the nutrient demand, we have to integrate both organic and inorganic sources of nutrients together in order to achieve higher NUE. Common measures of NUE include Partial Factor Productivity (PFP), Agronomic Efficiency (AE), Apparent Recovery Efficiency (RE), Physiological Efficiency (PE) and Internal Utilization Efficiency (IE). Mineral Fertilizer Equivalent (MFE) is another parameter that can be used to assess short term release of nutrients (mainly nitrogen) from organic nutrient sources


Author(s):  
Mousumi Malo ◽  
Anwesha Sarkar

Aims: To study the influence of inorganic and bio-fertilizers on nutrient uptake, soil fertility status and nutrient use efficiency of rice (Oryza sativa L.). Place and Duration of Study: The field trial was conducted in the experimental farm of Bidhan Chandra Krishi Viswavidyalaya, West Bengal, India during kharif season of 2016. Methodology: The experiment was carried out in a randomized block design with seven treatments each of which was replicated three times. The experiment was comprised of seven treatments viz. T1: control, T2: chemical fertilizer at 100% recommended dose of NPK, T3: 50% recommended dose of NP + 100% RDK + Bacillus polymyxa, T4: 75% recommended dose of NP + 100% RDK + Azotobacter chroococcum, T5: 75% recommended dose of NP + 100% RDK + Bacillus polymyxa, T6: 50% recommended dose of NP + 100% RDK + Pseudomonas fluorescence and T7: 50% recommended dose of NPK + Bacillus polymyxa. Rice cultivar ‘IET-4786 (Shatabdi)’ was used as test crop. Results: Results of this study revealed that the maximum nutrient concentration in rice grain and straw; total N, P and K uptake (136.80, 37.07 and 184.65 kg ha-1 respectively); grain and straw yield; were obtained with the application of 100% recommended dose of chemical fertilizer (T2). T2 treatment was followed by 75% recommended dose of NP + 100% RDK + Azotobacter chroococcum (T4) and 75% recommended dose of NP + 100% RDK + Bacillus polymyxa (T5). Treatments T4 and T5 were significant in improving the soil health status including organic carbon content (0.38%), available N (183.29 and 172.43 kg ha-1), P2O5 (44.31 and 41.46 kg ha-1) and K2O (217.89 and 195.82 kg ha-1). Conclusion: Therefore, treatments T4 and T5 exhibited beneficial effect on improving soil health and nutrient use efficiency leading towards higher rice yield along with reducing soil deterioration and maintaining sustainability.


Author(s):  
V. K. Singh ◽  
B. S. Dwivedi ◽  
S. S. Rathore ◽  
R. P. Mishra ◽  
T. Satyanarayana ◽  
...  

AbstractPotassium (K) demand by crops is almost as high as that of nitrogen (N) and plays a crucial role in many plant metabolic processes. Insufficient K application results in soil K mining, deficiency symptoms in crops, and decreased crop yields and quality. Crop K demands vary with crop types, growth patterns, nutrient needs at different physiological stages, and productivity. Science-based K application in crops needs to follow 4R Nutrient Stewardship to ensure high yield, improved farm income, and optimum nutrient use efficiency. Studies around the world report widespread K deficiency, ranging from tropical to temperate environments. Long-term experiments indicate significant yield responses to K application and negative K balances where K application is either omitted or applied suboptimally. Limited understanding of K supplementation dynamics from soil non-exchangeable K pools to the exchangeable and solution phases and over-reliance on native K supply to meet crop demand are major reasons for deficit of K supply to crops. Research on optimum timing of K fertilizer application in diverse climate–soil–crop systems is scarce. The common one-time basal K management practice is often not suitable to supply adequate K to the crops during peak demand phases. Besides, changes in crop establishment practices, residue retention, or fertigation require new research in terms of rate, time, or source of K application. The current review assesses the synchrony of K supply from indigenous soil system and from external sources vis-à-vis plant demand under different crops and cropping systems for achieving high yield and nutrient use efficiency.


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 207
Author(s):  
Meijuan Wen ◽  
Sicun Yang ◽  
Lin Huo ◽  
Ping He ◽  
Xinpeng Xu ◽  
...  

Imbalanced and excessive fertilizer application has resulted in low yields and reduced nutrient use efficiency for melon production in China. Estimating nutrient requirements is crucial for effectively developing site-specific fertilizer recommendations for increasing yield and profit while reducing negative environmental impacts. Relationships between the yield and nutrient uptake requirements of above-ground dry matter were assessed using 1127 on-farm observations (2000–2020) from melon production regions of China. The quantitative evaluation of fertility of tropical soils (QUEFTS) model was used to estimate nutrient requirements. It predicted a linear increase in yield at balanced nutrient uptake levels until the yield reached approximately 60–80% of the potential yield. In order to produce 1000 kg of fruit, 2.9, 0.4 and 3.2 kg/ha of N, P and K (7.2:1.0:7.8), respectively, were required for above-ground parts, while the corresponding nutrient internal efficiencies were 345.3, 2612.6 and 310.0 kg per kg N, P and K, respectively, whereas 1.4, 0.2 and 1.9 kg of N, P and K were required to replace nutrients removed after harvest. The corresponding fruit absorption rates were 47.0%, 59.5% and 58.2%, respectively. Field validation experiments confirmed the consistency between observed and simulated uptake rates, indicating that this model could estimate nutrient requirements. These findings will help develop fertilizer recommendations for improving melon yield and nutrient use efficiency.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Arvind Kumar Shukla ◽  
Sanjib Kumar Behera ◽  
Chandra Prakash ◽  
Ajay Tripathi ◽  
Ashok Kumar Patra ◽  
...  

AbstractNutrient deficiencies in soil–crop contexts and inappropriate managements are the important reasons for low crop productivity, reduced nutritional quality of agricultural produce and animal/human malnutrition, across the world. The present investigation was carried out to evaluate nutrient deficiencies of sulphur (S) and micronutrients [zinc (Zn), boron (B), iron (Fe), copper (Cu) and manganese (Mn)] in agricultural soils of India for devising effective management strategies to achieve sustainable crop production, improved nutritional quality in crops and better animal/human health. A total of 2,42,827 surface (0–15 cm depth) soil samples were collected from agriculture fields of 615 districts lying in 28 states of India and were analysed for available S and micronutrients concentration. The study was carried out under the aegis of All India Coordinated Research Project on Micro- and Secondary-Nutrients and Pollutant Elements in Soils and Plants. The mean concentrations were 27.0 ± 29.9 mg kg−1 for available S, 1.40 ± 1.60 mg kg−1 for available Zn and 1.40 ± 4.70 mg kg−1 for available B, 31.0 ± 52.2 mg kg−1 for available Fe, 2.30 ± 3.50 mg kg−1 for available Cu and 17.5 ± 21.4 mg kg−1 for available Mn. There were variable and widespread deficiencies of S and micronutrients in different states. The deficiencies (acute deficient + deficient + latent deficiency) of S (58.6% of soils), Zn (51.2% of soils) and B (44.7% of soils) were higher compared to the deficiencies of Fe (19.2% of soils), Cu (11.4% of soils) and Mn (17.4% of soils). Out of 615 districts, > 50% of soils in 101, 131 and 86 districts were deficient in available S, available Zn and available B, respectively. Whereas, > 25% of soils in 83, 5 and 41 districts had deficiencies of available Fe, available Cu and available Mn, respectively. There were occurrences of 2-nutrients deficiencies such S + Zn (9.30% of soils), Zn + B (8.70% of soils), S + B (7.00% of soils) and Zn + Fe (5.80% of soils) to a greater extent compared to the deficiencies of Zn + Mn (3.40% of soils), S + Fe (3.30% of soils), Zn + Cu (2.80% of soils) and Fe + B (2.70% of soils). Relatively lower % of soils were deficient in 3-nutrients (namely S + Zn + B, S + Zn + B and Zn + Fe + B), 4-nutrients (namely Zn + Fe + Cu + Mn) and 5-nutrients (namely Zn + Fe + Cu + Mn + B) simultaneously. The information regarding the distribution of deficiencies of S and micronutrients (both single and multi-nutrients) could be used by various stakeholders for production, supply and application of right kind of fertilizers in different districts, states and agro-ecological regions of India for better crop production, crop nutritional quality, nutrient use efficiency, soil health and for tackling human and animal malnutrition.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2320
Author(s):  
Raj K. Jat ◽  
Deepak Bijarniya ◽  
Suresh K. Kakraliya ◽  
Tek B. Sapkota ◽  
Manish Kakraliya ◽  
...  

Intensive tillage-based production systems coupled with inefficient fertilizer management practices have led to increased production costs, sub-optimal productivity, and significant environmental externalities. Conservation agriculture (CA) is being increasingly advocated as a management strategy to overcome these issues but precision nutrient management under the CA-based maize-wheat system is rarely studied. Two year’s (2014–2015 and 2015–2016) research was conducted at the research farm of BISA, Pusa, Bihar, India to develop precision nutrient management practices for CA-based management in the maize-wheat system. Seven treatment combinations involving (i) tillage (conventional tillage; CT & permanent beds; PB) and (ii) nutrient management rates, application methods (farmers’ fertilizer practices; FFP, state recommended dose of fertilizer; SR and precision nutrient management using Nutrient Expert tool; NE and GreenSeeker; (GS), applied using two methods; broadcasting (B) and drilling (D)) were investigated for multiple parameters. The results showed that NE, NE+GS, and SR-based nutrient management tactics with drilling improved crop yields, nutrient-use efficiency (NUE), and economic profitability relative to NE-broadcasting, SR broadcasting, and FFP broadcasting methods. Maize-wheat system productivity and net returns under NE+GS-drilling on PB were significantly higher by 31.2%, 49.7% compared to FFP-broadcasting method, respectively. Total global warming potential (GWP) was lower in the PB-based maize-wheat system coupled with precision nutrient management compared to CT-based maize-wheat system with FFP. Higher (15.2%) carbon sustainability index (CSI) was recorded with NE-drilling compared to FFP-broadcasting method. Results suggests that PB-based maize-wheat system together with precision nutrient management approaches (NE+GS+drilling) can significantly increase crop yields, NUE, and profitability while reducing the emission of greenhouse gases (GHGs) from maize-wheat systems in eastern Indo Gangetic Plains (IGP).


2021 ◽  
Vol 11 ◽  
Author(s):  
Swati Walia ◽  
Rakesh Kumar

Fertilization plays an irreplaceable role in raising crop yields; however, there are issues with unnecessary and blind use of chemical fertilizers, which raise the risk of contamination in the atmosphere. It is hypothesized that fertilization of nitrogen (N) and sulfur (S) will together improve the essential oil (EO) yield and composition of Tagetes minuta L. Thus, 2 years field experiment were carried out to evaluate the outcomes of N (0, 60, 90, and 120 kg ha–1) and S levels (0, 20, 40, and 60 kg ha–1) on T. minuta during 2018 and 2019. The growth, biomass, EO content and composition were influenced (P = 0.05) by N and S fertilization. N at 120 kg ha–1 and S at 60 kg ha–1 registered higher biomass (183.89 and 178.90 q ha–1, respectively) and EO yield (102.09 and 88.60 kg ha–1, respectively), than control. Stomatal density reduced significantly with increase of N and S levels, however, density of oil glands substantially increased with S at 40 and 60 kg ha–1. The major component of EO (Z-β-ocimene) significantly increased with 120 kg N ha–1 (42.59%) and 60 kg S ha–1 (42.35%), respectively. Available nutrients in soil and plant tissues substantially increased with N and S fertilization upto 120 and 60 kg ha–1, respectively. The highest nutrient use efficiency traits were recorded at 60 kg N ha–1 and 20 kg S ha–1. It was concluded that 120 kg N ha–1 and 40 kg S ha–1 can be proposed for T. minuta as a result of agronomic responses, which serves as a sustainable means of cropping.


EDIS ◽  
2020 ◽  
Vol 2020 (5) ◽  
Author(s):  
Mary Dixon ◽  
Guodong Liu

Tomato is in high demand because of its taste and health benefits. In Florida, tomato is the number one vegetable crop in terms of both acreage and value. Because of its high value and wide acreage, it is important for tomato production to be efficient in its water and nutrient use, which may be improved through fertigation practices. Therefore, the objective of this new 7-page article is to disseminate research-based methods of tomato production utilizing fertigation to enhance yield and nutrient use efficiency. Written by Mary Dixon and Guodong Liu, and published by the UF/IFAS Horticultural Sciences Department.https://edis.ifas.ufl.edu/hs1392


2018 ◽  
Vol 102 (4) ◽  
pp. 8-10
Author(s):  
Fernando García ◽  
Andrés Grasso ◽  
María González Sanjuan ◽  
Adrián Correndo ◽  
Fernando Salvagiotti

Trends over the past 25 years indicate that Argentina’s growth in its grain crop productivity has largely been supported by the depletion of the extensive fertility of its Pampean soils. Long-term research provides insight into sustainable nutrient management strategies ready for wide-scale adoption.


2021 ◽  
Vol 192 ◽  
pp. 103181
Author(s):  
Jagadish Timsina ◽  
Sudarshan Dutta ◽  
Krishna Prasad Devkota ◽  
Somsubhra Chakraborty ◽  
Ram Krishna Neupane ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document