scholarly journals Assessment of the Microbial Biomass Carbon (MB-C), Nitrogen (MB-N) and Phosphorus (MB-P) in Soil Spiked with Pesticides (Carbofuran and Paraquat)

Author(s):  
T. L. Ataikiru ◽  
G. S. C. Okpokwasili ◽  
P. O. Okerentugba

This study aimed at determining the impact of Carbofuran and Paraquat use on soil microbial biomass and microbial population as soil health index. Pot experiment, set-up as a randomized block design with replicates was done, with both pesticides applied at recommended rates for eight weeks. Twenty-four (24) soil samples were taken from the pesticides polluted soil as well as the unpolluted soil. These samples were used to assess the effect of pesticides on microbial biomass carbon (MB-C), nitrogen (MB-N) and phosphorus (MB-P). Also, microbial population (determined by aerobic spread plate count) of the pesticide-polluted soils was used as health index. The assessments were done weekly. The microbial biomass values increased from 273.48 µg/g to 293.15 µg/g (MB-C), 17.275 µg/g to 18.52 µg/g (MB-N) and 10.605 µg/g to 11.37 µg/g (MB-P) in carbofuran treated soil while increases from 277.26 µg/g to 288.365 µg/g (MB-C), 17.515 µg/g to 18.22 µg/g (MB-N) and 10.745 µg/g to 11.18 µg/g (MB-P) were observed in paraquat treated soil. The microbial counts in treated soils were within the ranges of 1.95 x 106 cfu/g to 1.03 x 107 cfu/g, 8.83 x 104 to 1.90 x 105 cfu/g, 1.08x 104 to 2.43 x 104, 1.15 x105 to 2.17 x 105 cfu/g, 1.38 x 105 to 2.22 x 105 cfu/g for total heterotrophic bacterial, fungal, actinomycetes, phosphate solubilizers, nitrifiers counts, respectively. The pesticides had no negative effects on the MB-C, MB-N, MB-P and soil microorganisms at recommended field rates, hence their use must be strictly based on these rates. These findings indicate that the relationship between soil nutrients and microbial biomass is significant in facilitating the use of microbial biomass as an important soil quality indicator.

1988 ◽  
Vol 68 (3) ◽  
pp. 463-473 ◽  
Author(s):  
V. V. S. R. GUPTA ◽  
J. R. LAWRENCE ◽  
J. J. GERMIDA

This study investigated the impact of repeated application of S° fertilizer on microbial and biochemical characteristics of two Grey Luvisolic soils. The Waitville pasture plots received Agri-Sul at a rate of 22 or 44 kg S° ha−1 yr−1 for 5 yr, whereas the Loon River canola-summerfallow plots received single or double applications of Flow-able Sulfur (50 kg S° ha−1) or Agri-Sul (100 kg S° ha−1). Application of S° fertilizer significantly decreased the pH in both soils. Organic C declined in S°-treated plots of the Waitville soil, and there was a narrowing of C:N:S ratios in both soils. Application of S° fertilizer significantly increased the total S, HI-S and sulfate sulfur levels of both soils. There was a 29–45% and 2–51% decline in microbial biomass carbon content due to S° fertilizer application in Waitville and Loon River soils, respectively. Repeated application of S° also resulted in a decline in respiration, dehydrogenase, urease, alkaline phosphatase and arylsulfatase activities, along with populations of protozoa, algae and nitrifiers in both soils. Significant correlations observed among related characteristics further emphasized the treatment effects. These results indicate that the impact of repeated application of S° fertilizer on microbial biomass and activity should be considered when recommending S° as a fertilizer for sulfur-deficient soils. Key words: Sulfur (elemental), microbial biomass, dehydrogenase, urea, phosphomonoesterases, arylsulfatase


2021 ◽  
Vol 42 (5) ◽  
pp. 1370-1378
Author(s):  
S. Aechra ◽  
◽  
R.H. Meena ◽  
S.C. Meena ◽  
S.L. Mundra ◽  
...  

Aim: A field experiment was conducted during rabi season to determine the effect of biofertilizers and split application of vermicompost on biological properties (microbial biomass carbon and nitrogen, microbial populations and enzyme activities) in rhizosphere of wheat. Methodology: The experiment was laid out in factorial randomized block design with three replications consisting of twenty treatment combinations. Soil samples were collected from the plots at 0-15 cm depth after harvest of wheat crop and soil biological properties analyzed using standard analytical procedure. Results: The experiment results indicated that among biofertilizers treatments, seed inoculation with Azotobacter + PSB + KMB + ZnSB (B5) resulted in a significant higher soil microbial biomass carbon, microbial biomass nitrogen, population of bacteria, fungi and actinomycetes, dehydrogenase activity and acid phosphatase enzyme activity in comparison to control. Similarly, application of vermicompost as 50 % VC at sowing + 50 % VC at tillering (V3) were obtained improved microbial biomass carbon and nitrogen, microbial population, dehydrogenase activity and acid phosphatase enzyme activity while remaining at par with 75 % VC at sowing + 25 % VC at tillering (V4) proved superior in comparison to rest of the treatments due to continuous supply of nutrients throughout the crop cycle. Grain and straw yield of wheat also increased due to the application of biofertilizers and vermicompost over the control. Interpretation: Biofertilizers (Azotobacter, PSB, KMB and ZnSB) and split application of vermicompost enhanced the soil microbial population and enzymatic activities which sustained the soil health for better wheat production.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1191
Author(s):  
Liyana Rallage Mahesh Chaminda Liyanage ◽  
Muhammad Firdaus Sulaiman ◽  
Roslan Ismail ◽  
Gamini Perera Gunaratne ◽  
Randombage Saman Dharmakeerthi ◽  
...  

Understanding carbon mineralization dynamics of organic amendments is essential to restore degraded lands. This study focused on the restoration potentials of tea-growing soils using organic materials available in tea ecosystems. The Selangor-Briah soil series association (Typic Endoaquepts) consisted of a high- (soil A) and a low-carbon (soil B) soils were incubated with different organic materials and released carbon dioxide (CO2) measured. Two kinetic models were applied to depict the mineralization process. Soil health parameters including microbial biomass carbon and nitrogen, dehydrogenase and catalase activities were determined to assess the restoration potentials. The parallel first-order kinetic model fitted well for all amendments. Gliricidia markedly enhanced the net cumulative CO2 flux in both soils. Charged biochar, tea waste and Gliricidia improved the microbial biomass carbon by 79–84% in soil A and 82–93% in soil B, respectively. Microbial quotients and biomass nitrogen were increased over 50 and 70% in amended soils, respectively. Dehydrogenase activity was significantly accelerated over 80% by compost, charged biochar and tea waste. Charged biochar remarkably increased the soil catalase activity by 141%. Microbial biomass, dehydrogenase and catalase activities, and cumulative CO2 flux were positively correlated (r > 0.452) with one another. The studied amendments showed greater potential in improving the soil quality, while charged biochar, raw biochar and compost enrich the soil recalcitrant C pool ensuring the soil health in long term. Even though biochar sequesters carbon, it has to be charged with nutrients to achieve the soil restoration goals.


2021 ◽  
Vol 42 (5) ◽  
pp. 1379-1386
Author(s):  
B. Gogoi ◽  
◽  
B. Kalita ◽  
I. Bhupenchandra ◽  
P. Sutradhar ◽  
...  

Aim: To investigate the effect of different organic manures on the performance of toria crop and to understand their impact on the soil properties and availability of nutrients in acidic sandy loam soil. Methodology: Three-year fixed plot study was conducted with 7 treatments viz., T1: control, T2: recommended dose of fertilizers (RDF), T3: cow dung manure @ 5 t ha-1, T4: pig dung manure @ 5 t ha-1, T5: goat dung manure @ 5 t ha-1, T6: farm yard manure (FYM) @ 5 t ha-1, and T7: vermicompost @ 5 t ha-1 replicating 3 times in a complete randomized block design. Data were collected and analysed following the standard procedures. The yield and yield attributing parameters of toria and the soil properties such as soil pH, organic carbon, microbial biomass carbon and available NPK were studied. Results: Application of different organic manures significantly affected the plant height, number of primary branches per plant, number of siliquae per branch, number of seeds siliqua and 1000-seed weight of toria crop. Addition of organic manure significantly enhanced the soil organic carbon, microbial biomass carbon and available NPK in the soil over initial, except soil pH. The cost of cultivation, gross return and net return varied from 10.50 ×103 to 23.10 ×103, 15.00 ×103 to 35.10 ×103 and 4.46 ×103 to 19.96 ×103 Rs. ha-1, respectively. The B:C ratio varied in the order of goat dung manure > cow dung manure >RDF >FYM > pig dung manure > vermicompost > control treatment. Interpretation: To achieve maximum performance with nourishment of soil quality and health, application of vermicompost was confirmed to be the best over other organic sources of nutrients primarily due to enhancement in C and N status and an increase in microbial activities in soil.


Forests ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 274 ◽  
Author(s):  
Víctor Fernández-García ◽  
Elena Marcos ◽  
Otilia Reyes ◽  
Leonor Calvo

Global change is altering fire frequency and severity in many regions across the world. In this work, we studied the impact of different frequency and severity regimes on the soil biochemical properties in burned areas with different environmental conditions. We selected three sites dominated by pine ecosystems along a Mediterranean-Transition-Oceanic climatic gradient, where we determined the fire frequency, and severity of the last wildfire. Four years after the last wildfire, we established 184 4 m2 plots. In each plot, we collected a composed soil sample from a 3 cm depth, and measured several ecological variables potentially affected by the fire frequency and severity (cover of bare soil, cover of fine and coarse plant debris, cover of vegetation, and vegetation height). From each soil sample, we analyzed the enzymatic activities corresponding to the biogeochemical cycles of carbon, nitrogen, and phosphorus (β-glucosidase, urease, and acid-phosphatase, respectively), and the microbial biomass carbon. The results indicated that fire frequency only played a significant role in soil biochemical properties at the Mediterranean and Transition sites. Specifically, we found that increases in frequency contributed to increased urease and phosphatase activities (at the Transition site), as well as microbial biomass carbon (at the Mediterranean and Transition sites). In relation to burn severity, we found opposite patterns when comparing the Mediterranean and Oceanic sites. Specifically, increased severity significantly decreased β-glucosidase, urease, and microbial biomass carbon at the Mediterranean site, whereas at the Oceanic one, severity significantly increased them. Burn severity also decreased microbial biomass carbon at the Transition site. Our results also indicated that, overall, fire frequency determined the studied ecological variables at the Mediterranean and Transition sites, but clear indirect effects on biochemical properties due to changes in ecological variables were not found. This study adds to the knowledge on the impact of shifts in fire regimes on soils in the current context of change.


2014 ◽  
Vol 65 (9) ◽  
pp. 899 ◽  
Author(s):  
Karen R. Little ◽  
Michael T. Rose ◽  
William R. Jackson ◽  
Timothy R. Cavagnaro ◽  
Antonio F. Patti

Commercial products derived from lignite (brown coal), sold mainly as humate preparations, are widely promoted as plant growth stimulants leading to higher crop yields. These products are also claimed to improve key indicators of soil health including soil pH and microbial biomass. In a glasshouse setting, we investigated the effect of six lignite-derived amendments applied at the manufacturer’s recommended rate on the early-stage growth of two pasture species, lucerne (Medicago sativa L.) and ryegrass (Lolium multiflorum Lam.). We used two soil types common to south-eastern Australia, and following an 8-week growing period, assessed soil pH, microbial biomass carbon and mycorrhizal colonisation as key indicators of soil health. We hypothesised that humic acid (HA) and macronutrients derived from the products would positively influence pasture growth and soil health indicators. Although significant growth effects were observed in response to some products, the effects were inconsistent across pasture and soil types. Treatment effects on tissue nutrient accumulation were rare, with the exception of increased potassium in ryegrass in one soil amended with raw brown coal, and decreased nitrogen in lucerne in the same soil amended with a granulated, slow-release humate product. Further, we found no consistent trends in mycorrhizal colonisation or microbial biomass carbon in response to individual treatments. Given the variable responses of the plant species and soil types to the amendments used here, we emphasise the need for further mechanistic studies to help understand how these amendments can be used to greatest effect.


2020 ◽  
Vol 36 (4) ◽  
Author(s):  
Sarah Priscilla do Nascimento Amorim ◽  
Cacio Luiz Boechat ◽  
Lizandra de Sousa Luz Duarte ◽  
Daniela Fernandes de Oliveira ◽  
João Carlos Medeiros ◽  
...  

Carbon and nitrogen from the soil microbial biomass play a significant role in the rotation of C and N, and promote nutrient cycling. Thus, the objective of this study was to evaluate changes in the soil microbial biomass with growing doses of cover plant straw species. The cover plants cultivated in the cerrado biome region were incorporated an Oxisol Ustox. The straw of each cover plant was incorporated at doses of 0; 10; 20 and 30 Mg ha-1. The soil basal respiration was determined by incubating, after 21 days. The microbial biomass carbon and nitrogen were determined by the method the microwave irradiation. The microbial biomass carbon and nitrogen contents in extracts were determined by the wet combustion method and Kjeldahl-N. The metabolic quotient was calculated as the ratio between soil basal respiration rate and microbial biomass C, and the microbial quotient as the ratio between soil microbial biomass C and total carbon of soil. The soil microbial population measured by the attributes of quality responds to the addition of the of grass and legume straws incorporated to the soil; The treatments that cause the greatest stress to the microbial population, at 21 days, mediated by the metabolic quotient, are guandu-anão at a dose of 10 Mg ha-1; Guandu-anão and Guandu fava-larga at 20 Mg ha-1 and Brachiária at a dose of 30 Mg ha-1; The best result regarding microbial attributes of soil quality evaluated was observed with the incorporation of all doses of the straw of Crotalaria-ocroleuca.  


2018 ◽  
Vol 3 (02) ◽  
pp. 129-131
Author(s):  
R. P. Yadav ◽  
B. Gupta ◽  
P. L. Bhutia ◽  
J. K. Bisht ◽  
V. S. Meena ◽  
...  

The change in land use as well as elevation changes microbial biomass carbon (C), nitrogen (N) and water extractable organic carbons (WOC), which are important parameters of soil fertility and essential for sustainable management of any land use. In Central Himalaya watershed (2B4D6) the land use pattern varies with elevation. The present study aims to examine the soils (0-30 cm depth) of different land uses i.e. agroforestry, silvipastoral and grassland for microbial biomass C, N, microbial population and WOC along the elevation. Microbial biomass C, N, microbial population and WOC contents varied significantly (less than 0.005) among land uses and it increased along the elevation. Maximum microbial biomass C and N was recorded in agroforestry, silvipastoral and minimum in grassland. While, WOC highest in silvipasture, agroforestry and grassland. Land uses along elevation had strong positive correlation with microbial biomass C, N and WOC. Thus it is concluded that microbial biomass C, N, microbial population and WOC changes significantly (less than 0.05) in different land uses and along elevation gradient.


Sign in / Sign up

Export Citation Format

Share Document