scholarly journals Determination of the Equilibrium Point According to a Temporal Model of Rehydration in a Population with Cholera in Logistic Growth

Author(s):  
K. O. Jackob

Cholera is an infection of the small intestine of humans caused by a gram-negative bacterium called Vibrio cholerae. It is spread through eating food or drinking water contaminated with faeces from an infected person. It causes rapid dehydration and general body imbalance, and can lead to death since untreated individuals suer severely from diarrhea and vomiting. Its dynamics involves multiple interaction between the human host, the pathogen and the environment which contributes to both human to human and indirect environment to human transmission pathways. Rehydration is critical in reducing cholera death. This has been studied by other scholars but they did not consider delay in rehydration on the spread of cholera. In this paper, I formulate a mathematical model based on system of ordinary differential equation with rehydration on the spread of cholera in a logistically growing population. The existence of the steady states and the basic reproduction number is established such that disease free equilibrium point exists. Determination of endemic equilibrium shows that the model has positive points. The findings will be signicant in the sense that timely rehydration should be done during cholera outbreak and will enable individuals with symptoms to seek immediate medical attention.

2021 ◽  
Vol 16 ◽  
pp. 1-9
Author(s):  
Joko Harianto

This article discusses modifications to the SEIL model that involve logistical growth. This model is used to describe the dynamics of the spread of tuberculosis disease in the population. The existence of the model's equilibrium points and its local stability depends on the basic reproduction number. If the basic reproduction number is less than unity, then there is one equilibrium point that is locally asymptotically stable. The equilibrium point is a disease-free equilibrium point. If the basic reproduction number ranges from one to three, then there are two equilibrium points. The two equilibrium points are disease-free equilibrium and endemic equilibrium points. Furthermore, for this case, the endemic equilibrium point is locally asymptotically stable.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Jianping Wang ◽  
Shujing Gao ◽  
Yueli Luo ◽  
Dehui Xie

We analyze the impact of seasonal activity of psyllid on the dynamics of Huanglongbing (HLB) infection. A new model about HLB transmission with Logistic growth in psyllid insect vectors and periodic coefficients has been investigated. It is shown that the global dynamics are determined by the basic reproduction numberR0which is defined through the spectral radius of a linear integral operator. IfR0< 1, then the disease-free periodic solution is globally asymptotically stable and ifR0> 1, then the disease persists. Numerical values of parameters of the model are evaluated taken from the literatures. Furthermore, numerical simulations support our analytical conclusions and the sensitive analysis on the basic reproduction number to the changes of average and amplitude values of the recruitment function of citrus are shown. Finally, some useful comments on controlling the transmission of HLB are given.


2011 ◽  
Vol 2 (1) ◽  
pp. 61-63
Author(s):  
Ashutosh Chauhan ◽  
NC Chakarborty ◽  
Pramod Nath ◽  
Manomoy Ganguly

ABSTRACT Primary sinonasal small cell carcinomas are extremely rare lesions. We present a case of 29-year-old male patient, who initially presented with recurrent right sided nasal obstruction and occasional epistaxis, but came to medical attention when he developed progressive deterioration of vision in ipsilateral eye. Radiological examination showed a tumor with epicenter in right nasal cavity with extensive local infiltration. The histopathology picture and immunohistochemistry profile of the tumor showed it to be a primary small cell neuroendocrine tumor. Extensive imaging studies revealed no other site of primary. He was treated with induction chemotherapy followed by concomitant chemoradiotherapy. Complete clinical response was seen and the patient has been disease free since last 20 months. The report discusses the diagnostic criteria which differentiates this extremely rare but aggressive tumor from a much more common and more indolent tumor, esthesioneuroblastoma.


2018 ◽  
Vol 15 (2) ◽  
pp. 67
Author(s):  
Stella Maryana Belwawin

AbstractThis aim of this study is to determine the point of equilibrium and analyze the stability of SEIAR-SEI model on malaria disease with asymptomatic infection, super infection and the effect of the mosquito's life cycle. This study also aim is to measure the sensitivity of the spread of malaria to the parameters of asymptomatic infections, the rate of treatment, and the rate of birth of mosquitoes through the magnitude of . The method in this research is deductively, through several stage, such as  determination of disease-free equilibrium point and endemic equilibrium point, determination of basic reproduction number (), analyze of the basic reproduction number sensitivity of the spread of malaria to the parameters of asymptomatic infections, the rate of treatment, and the rate of birth of mosquitoes. The endemic equilibrium point was obtained using rule of Descartes. The result show that the change in the value of parameter , , and  has effect on the basic reproduction number (). Treatment factors in the human population influence the elimination of malaria in a population. Whereas asymptomatic infection factors and the birth rate of adult mosquitoes influence the increase in malaria infection. Keywords:  Malaria, asymptomatic infection, super infection, basic reproduction number, rule of descrates. AbstrakPenelitian ini bertujuan menentukan titik keseimbangan dan menganalisis kestabilan dari model SEIAR_SEI pada penyakit malaria dengan pengaruh infeksi asimtomatik, super infeksi, dan siklus hidup nyamuk. Penelitian ini juga bertujuan mengukur tingkat sensitivitas penyebaran penyakit malaria terhadap parameter infeksi asimtomatik, laju pengobatan, serta laju kelahiran nyamuk.melalu besaran .  Metode yang digunakan dalam penelitian ini adalah metode deduktif dengan langkah-langkah : menentukan titik keseimbangan bebas penyakit dan endemik dan menentukan bilangan reproduksi dasar ). Analisis sensitivitas bilangan reproduksi dasar dilakukan terhadap parameter infeksi asimtomatik, pengobatan, dan laju kelahiran nyamuk. Tititk keseimbangan endemik diperoleh dengan aturan descrates. Hasil yang diperoleh menunjukkan parameter , , dan  berpengaruh terhadap bilangan reproduksi dasar (). Faktor pengobatan berpengaruh terhadap eliminasi penyakit malaria. Sedangkan faktor infeksi asimtomatik dan laju kelahiran nyamuk dewasa berpengaruh terhadap peningkatan infeksi penyakit malaria. Kata kunci: Malaria, Infeksi Asimtomatik, Super Infeksi, Bilangan Reproduksi Dasar, Aturan Descrates . 


Author(s):  
Jun Yin ◽  
Mohamed E Salem ◽  
Jesse G Dixon ◽  
Zhaohui Jin ◽  
Romain Cohen ◽  
...  

Abstract Background Disease-free survival with a 3-year median follow-up (3-year DFS) was validated as a surrogate for overall survival with a 5-year median follow-up (5-year OS) in adjuvant chemotherapy colon cancer (CC) trials. Recent data show further improvements in OS and survival after recurrence, in patients who received adjuvant FOLFOX. Hence, re-evaluation of the association between DFS and OS and determination of the optimal follow-up duration of OS to aid its utility in future adjuvant trials are needed. Methods Individual patient data from nine randomized studies conducted between 1998 and 2009 were included; three trials tested biologics. Trial-level surrogacy examining the correlation of treatment effect estimates of 3-year DFS with 5 to 6.5-year OS was evaluated using both linear regression (R2WLS) and Copula bivariate (R2Copula) models and reported with 95% confidence intervals (CIs). For R2, a value closer to 1 indicates a stronger correlation. Results Data from a total of 18,396 patients were analyzed (median age = 59 years; 54.0% male), with 54.1% having low-risk tumors (pT1-3 & pN1), 31.6% KRAS mutated, 12.3% BRAF mutated, and 12.4% microsatellite instability high/deficient mismatch repair tumors. Trial level correlation between 3-year DFS and 5-year OS remained strong (R2 =0.82, 95% CI = 0.67 to 0.98; R2 =0.92, 95% CI = 0.83 to 1.00) and increased as the median follow-up of OS extended. Analyses limited to trials that tested biologics showed consistent results. Conclusion Three-year DFS remains a validated surrogate endpoint for 5-year OS in adjuvant CC trials. The correlation was likely strengthened with 6 years of follow-up for OS.


2020 ◽  
Vol 10 (22) ◽  
pp. 8296 ◽  
Author(s):  
Malen Etxeberria-Etxaniz ◽  
Santiago Alonso-Quesada ◽  
Manuel De la Sen

This paper investigates a susceptible-exposed-infectious-recovered (SEIR) epidemic model with demography under two vaccination effort strategies. Firstly, the model is investigated under vaccination of newborns, which is fact in a direct action on the recruitment level of the model. Secondly, it is investigated under a periodic impulsive vaccination on the susceptible in the sense that the vaccination impulses are concentrated in practice in very short time intervals around a set of impulsive time instants subject to constant inter-vaccination periods. Both strategies can be adapted, if desired, to the time-varying levels of susceptible in the sense that the control efforts be increased as those susceptible levels increase. The model is discussed in terms of suitable properties like the positivity of the solutions, the existence and allocation of equilibrium points, and stability concerns related to the values of the basic reproduction number. It is proven that the basic reproduction number lies below unity, so that the disease-free equilibrium point is asymptotically stable for larger values of the disease transmission rates under vaccination controls compared to the case of absence of vaccination. It is also proven that the endemic equilibrium point is not reachable if the disease-free one is stable and that the disease-free equilibrium point is unstable if the reproduction number exceeds unity while the endemic equilibrium point is stable. Several numerical results are investigated for both vaccination rules with the option of adapting through ime the corresponding efforts to the levels of susceptibility. Such simulation examples are performed under parameterizations related to the current SARS-COVID 19 pandemic.


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 455 ◽  
Author(s):  
Zhe Yin ◽  
Yongguang Yu ◽  
Zhenzhen Lu

This paper is concerned with the stability of an age-structured susceptible–exposed– infective–recovered–susceptible (SEIRS) model with time delay. Firstly, the traveling wave solution of system can be obtained by using the method of characteristic. The existence and uniqueness of the continuous traveling wave solution is investigated under some hypotheses. Moreover, the age-structured SEIRS system is reduced to the nonlinear autonomous system of delay ODE using some insignificant simplifications. It is studied that the dimensionless indexes for the existence of one disease-free equilibrium point and one endemic equilibrium point of the model. Furthermore, the local stability for the disease-free equilibrium point and the endemic equilibrium point of the infection-induced disease model is established. Finally, some numerical simulations were carried out to illustrate our theoretical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Caijuan Yan ◽  
Jianwen Jia

We consider SIR epidemic model in which population growth is subject to logistic growth in absence of disease. We get the condition for Hopf bifurcation of a delayed epidemic model with information variable and limited medical resources. By analyzing the corresponding characteristic equations, the local stability of an endemic equilibrium and a disease-free equilibrium is discussed. If the basic reproduction ratioℛ0<1, we discuss the global asymptotical stability of the disease-free equilibrium by constructing a Lyapunov functional. Ifℛ0>1, we obtain sufficient conditions under which the endemic equilibriumE*of system is locally asymptotically stable. And we also have discussed the stability and direction of Hopf bifurcations. Numerical simulations are carried out to explain the mathematical conclusions.


2004 ◽  
Vol 12 (04) ◽  
pp. 399-417 ◽  
Author(s):  
M. KGOSIMORE ◽  
E. M. LUNGU

This study investigates the effects of vaccination and treatment on the spread of HIV/AIDS. The objectives are (i) to derive conditions for the success of vaccination and treatment programs and (ii) to derive threshold conditions for the existence and stability of equilibria in terms of the effective reproduction number R. It is found, firstly, that the success of a vaccination and treatment program is achieved when R0t<R0, R0t<R0v and γeRVT(σ)<RUT(α), where R0t and R0v are respectively the reproduction numbers for populations consisting entirely of treated and vaccinated individuals, R0 is the basic reproduction number in the absence of any intervention, RUT(α) and RVT(σ) are respectively the reproduction numbers in the presence of a treatment (α) and a combination of vaccination and treatment (σ) strategies. Secondly, that if R<1, there exists a unique disease free equilibrium point which is locally asymptotically stable, while if R>1 there exists a unique locally asymptotically stable endemic equilibrium point, and that the two equilibrium points coalesce at R=1. Lastly, it is concluded heuristically that the stable disease free equilibrium point exists when the conditions R0t<R0, R0t<R0v and γeRVT(σ)<RUT(α) are satisfied.


Sign in / Sign up

Export Citation Format

Share Document