scholarly journals Development Liquid and Solid Self Microemulsifying Drug Delivery System (L-SMEDDS and S-SMEDDS) Containing Black Seed Oil (Nigella sativa L.)

Author(s):  
Sani Ega Priani ◽  
Septiani Siti Maulidina ◽  
Fitrianti Darusman

Aims: The aims of this research were to develop and characterize liquid and solid micro emulsifying drug delivery system (L-SMEDDS and S-SMEDDS) containing black seed oil.  Study Design: Experimental Research Design (laboratory). Place and Duration of Study: The study was conducted at research laboratory of pharmacy department UNISBA, between August 2018- August 2019. Methodology: The optimization of L-SMEDDS was carried out using various comparison of oil, surfactant, and cosurfactant. All formulations were evaluated for percent transmittance, emulsification time, dispersibility, robustness, and thermodynamic stability. The best formula of L-SMEDSS was evaluated for globule size distribution and converted to S-SMEDDS by spray drying method using aerosil 200 as adsorbent. S-SMEDDS were evaluated for organoleptic, flowability, compressibility, emulsification time, dispersibility, robustness and surface morphology. Results: The best formula of L-SMEDDS contains tween 80 as a surfactant and PEG 400 as cosurfactant (2:1) with a ratio of oil and Smix (2:8). The L-SMEDDS preparation meets the requirement of percent transmittance (95.77%), emulsification time (37.67 seconds), grade A of dispersibility, stable of robustness and thermodynamics study with the average of globule size was 231 nm. S-SMEDDS preparation meets the requirement of the moisture content, flowability, emulsification time, and stable on robustness testing with a spherical shape. Conclusion: L-SMEDDS and S-SMEDDS of black seed oil have been developed and have good physical characteristics and stability.

2020 ◽  
Vol 1469 ◽  
pp. 012022
Author(s):  
S E Priani ◽  
S S Maulidina ◽  
F Darusman ◽  
L Purwanti ◽  
D Mulyanti

2021 ◽  
Vol 78 ◽  
pp. 104391
Author(s):  
Shimul Halder ◽  
Amena Islam ◽  
Md. Abdul Muhit ◽  
Manik Chandra Shill ◽  
Syed Shabbir Haider

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3067
Author(s):  
Mustafa A. Jihad ◽  
Farah T. M. Noori ◽  
Majid S. Jabir ◽  
Salim Albukhaty ◽  
Faizah A. AlMalki ◽  
...  

Flaky graphene oxide (GO) nanoparticles (NPs) were synthesized using Hummer’s method and then capped with polyethylene glycol (PEG) by an esterification reaction, then loaded with Nigella sativa (N. sativa) seed extract. Aiming to investigate their potential use as a smart drug delivery system against Staphylococcus aureus and Escherichia coli, the spectral and structural characteristics of GO-PEG NPs were comprehensively analyzed by XRD, AFM, TEM, FTIR, and UV- Vis. XRD patterns revealed that GO-PEG had different crystalline structures and defects, as well as a higher interlayer spacing. AFM results showed GONPs with the main grain size of 24.41 nm, while GONPs–PEG revealed graphene oxide aggregation with the main grain size of 287.04 nm after loading N. sativa seed extract, which was verified by TEM examination. A strong OH bond appeared in FTIR spectra. Furthermore, UV- Vis absorbance peaks at (275, 284, 324, and 327) nm seemed to be correlated with GONPs, GO–PEG, N. sativa seed extract, and GO –PEG- N. sativa extract. The drug delivery system was observed to destroy the bacteria by permeating the bacterial nucleic acid and cytoplasmic membrane, resulting in the loss of cell wall integrity, nucleic acid damage, and increased cell-wall permeability.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2920
Author(s):  
Ameeduzzafar Zafar ◽  
Syed Sarim Imam ◽  
Nabil K. Alruwaili ◽  
Omar Awad Alsaidan ◽  
Mohammed H. Elkomy ◽  
...  

Hypertension is a cardiovascular disease that needs long-term medication. Oral delivery is the most common route for the administration of drugs. The present research is to develop piperine self-nanoemulsifying drug delivery system (PE-SNEDDS) using glyceryl monolinoleate (GML), poloxamer 188, and transcutol HP as oil, surfactant, and co-surfactant, respectively. The formulation was optimized by three-factor, three-level Box-Behnken design. PE-SNEDDs were characterized for globule size, emulsification time, stability, in-vitro release, and ex-vivo intestinal permeation study. The optimized PE-SNEDDS (OF3) showed the globule size of 70.34 ± 3.27 nm, percentage transmittance of 99.02 ± 2.02%, and emulsification time of 53 ± 2 s Finally, the formulation OF3 was transformed into solid PE-SNEDDS (S-PE-SNEDDS) using avicel PH-101 as adsorbent. The reconstituted SOF3 showed a globule size of 73.56 ± 3.54 nm, PDI of 0.35 ± 0.03, and zeta potential of −28.12 ± 2.54 mV. SEM image exhibited the PE-SNEDDS completely adsorbed on avicel. Thermal analysis showed the drug was solubilized in oil, surfactant, and co-surfactant. S-PE-SNEDDS formulation showed a more significant (p < 0.05) release (97.87 ± 4.89% in 1 h) than pure PE (27.87 ± 2.65% in 1 h). It also exhibited better antimicrobial activity against S. aureus and P. aeruginosa and antioxidant activity as compared to PE dispersion. The in vivo activity in rats exhibited better (p < 0.05) antihypertensive activity as well as 4.92-fold higher relative bioavailability than pure PE dispersion. Finally, from the results it can be concluded that S-PE-SNEDDS might be a better approach for the oral delivery to improve the absorption and therapeutic activity.


2019 ◽  
Vol 7 (4) ◽  
pp. 328-338
Author(s):  
Rajan Kalamkar ◽  
Shailesh Wadher

Background: Phosal based excipients are liquid concentrates containing phospholipids. They are used to solubilize water-insoluble drug and also act as an emulsifier to get the smallest droplet size of the formed emulsion after administration. Objective: The aim is to prepare phosal based self nanoemulsifying drug delivery system (SNEDDS) for water insoluble drug zaltoprofen. Methods: The various parameters like solubility of drug in different vehicles, ternary phase diagram are considered to formulate the stable emulsion which is further characterized by Self emulsification time and globule size analysis to optimize liquid SNEDDS of Zaltoprofen. Optimized L-SNEDDS was converted into free-flowing powder Solid-SNEDDS (S-SNEDDS). S-SNEDDS was evaluated for Globule size analysis after reconstitution, in vitro dissolution study and in vivo pharmacokinetic study in rats. Results: Phosal 53 MCT with highest drug solubility was used as oil along with Tween 80 and PEG 400 as surfactant and cosurfactant respectively to prepare liquid SNEDDS. Neusilin us2 was used as an adsorbent to get free-flowing S-SNEDDS. S-SNEDDS showed improved dissolution profile of the drug as compared to pure drug. In vivo study demonstrated that there is a significant increase in Cmax and AUC of S-SNEDDS compared to zaltoprofen powder. Conclusion: Phosal based SNEDDS formation can be successfully used to improve the dissolution and oral bioavailability of poorly soluble drug zaltoprofen.


Sign in / Sign up

Export Citation Format

Share Document